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Introduction
The ocean supports diverse and productive marine ecosystems that provide innumerable benefits to the 
United States. Fishing, recreation and tourism, energy, shipping, and transportation in the ocean and Great 
Lakes (see Ch. 24) sustain a marine economy that contributed over $781 billion (in 2022 dollars) to the US 
economy in 2021.1 Ocean resources support human health and well-being in communities throughout 
the US, and sustained connections to the ocean are foundational to cultures and identities. This chapter 
assesses climate impacts and risks to US marine ecosystems, and to the communities and industries that 
depend on them, as well as ocean-based measures for climate change adaptation and mitigation.

Across the globe, climate change is altering marine ecosystems and connected social systems at a scale and 
pace that is unprecedented in recent millennia. The combination of long-term changes in physical ocean 
conditions—such as warming, sea ice loss, acidification, and deoxygenation (KMs 2.1, 3.3)—and short-term 
extreme events (KM 2.2) such as marine heatwaves threatens marine ecosystems and human communities 
(Focus on Compound Events). Numerous marine species, from phytoplankton to whales, are altering their 
distribution, seasonal activities, and behaviors to align with suitable ocean conditions. These changes 
ripple through the food web, affecting species interactions, ecosystem functions, and biodiversity, as well 
as conservation, management, and uses of valuable ocean resources.2 Climate-driven changes to marine 
ecosystems significantly affect ocean-dependent livelihoods and, in some communities, threaten food 
supplies and ways of life.3

In affected communities, the magnitude of climate impacts and levels of adaptive capacity vary with marine 
resource dependence, socioeconomic status, and historical and institutionalized inequities.4,5,6 Some 
individuals, communities, and industries are adapting to changes, largely through reactionary responses 
and, in some cases, through coordinated resilience planning.7,8,9 However, responses are uneven across 
communities and sectors, and they remain insufficient to meet mounting challenges and costs.9,10 Global 
policy choices regarding greenhouse gas (GHG) mitigation govern the intensity and trajectory of future 
climate impacts and the diversity and effectiveness of adaptation options. Mitigation and adaptation efforts 
require explicit accountability in social equity, sustainability goals, and fairness in governance and finance to 
address entrenched inequities that increase climate change risks and adaptation burdens.5,11

This chapter draws on global insights to address climate-related changes and challenges in US marine 
areas. It largely focuses on continental shelf waters, with some discussion of topics that extend shoreward 
to intertidal areas, and it complements Chapter 9 (Coastal Effects), which extensively covers the topic 
of sea level rise. The chapter builds upon the climate-related physical oceanographic changes discussed 
in Chapters 2 (Climate Trends) and 3 (Earth Systems Processes) to highlight some of the unprecedented 
ecological changes taking place in US marine waters and their impacts on social, economic, and governance 
systems. Policy directions, planning efforts, and investment decisions being made now will affect mitigation 
and adaptation options and timelines and will determine the future of our ocean and social and economic 
systems that rely on it.
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Key Message 10.1  
Unprecedented Climate Impacts Threaten Ecosystems and Human Well-Being

Climate change is significantly altering US marine ecosystems at a pace, magnitude, and 
extent that is unprecedented over millennia (very high confidence). Changes in species 
locations, productivity, and seasonal timing are cascading through ecosystems, threatening 
critical connections between people and the ocean (high confidence), especially for Indig-
enous Peoples (very high confidence). Risks to marine ecosystems and the people connected 
to them will be greater under higher scenarios (likely, very high confidence) and will depend on 
the ability of ecological and social systems to adapt to the pace of climate change (very high 
confidence). Continued climate change, particularly under higher scenarios, is projected to 
push many systems toward novel conditions and critical tipping points (very high confidence), 
beyond which the risk of significant impacts to marine ecosystems, including collapse, is high, 
adaptation may be insufficient, and human well-being is threatened (high confidence).

Observed Changes
Climate-driven changes are altering marine ecosystems via complex physical, biological, and socioeco-
nomic interactions (Figure 10.1). Many ocean characteristics, such as the timing and length of seasonal 
cycles, extent and duration of sea ice, oxygen content, and severity of extreme events are exhibiting 
major divergences from historical patterns (Box 10.1; KMs 2.2, 3.1; Figure A4.11).10,12,13,14 Changes in distribu-
tions, population productivity, and timing of life events are widely documented for marine species and are 
increasing in prevalence and magnitude (Figure A4.12).15,16,17,18,19

Critical habitats such as coral reefs, seagrass beds, and kelp forests have experienced large-scale 
degradation due to climate-related stressors, threatening their ability to support commercially and eco-
logically important fish, shellfish, turtles, and marine mammals.20,21,22,23 Degradation of nursery habitats, 
spawning areas, and other essential habitats has the potential to affect the productivity and distribution of 
species.21,24 

Marine species are shifting their geographic distributions even faster than terrestrial species25 and are 
changing the timing of seasonal activities.16 As changes cascade from microbes to top predators across 
food webs, these shifts are decoupling some predator–prey relationships26,27 and amplifying others.28 For 
example, shifts in species have reduced prey availability for seabirds, driving large-scale starvation events 
and breeding-colony failures.29,30,31

While warming has benefitted some marine resources in poleward portions of their range (such as an 
increased abundance of American lobster in the Gulf of Maine32), many species—especially those that are 
cold-adapted, fixed in place, or have complex life histories—have been negatively affected.33,34,35 Protected 
and endangered species with limited population resilience, including multiple species of coral, salmon, 
and whales, are particularly vulnerable to impacts of unfavorable physical and ecosystem conditions 
(KM 8.2).22,36,37,38
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Ocean-Related Climate Impacts on People and Ecosystems 

Many broad-scale climate-related ecological and human impacts are occurring in US marine areas.

Figure 10.1. Climate change is affecting marine ecosystems and impacting human activities in the US ocean. The 
nature of ocean-based climate impacts is often unique to local areas but can cascade through social–ecological 
systems to affect the entire country. For example, extreme weather events impact shipping and supply chains, 
and harmful algal blooms (HABs) in coastal areas affect tourism. User conflicts, such as those involving the siting 
of offshore renewable energy in fishing areas, have created tensions in US waters. Climate impacts on physical 
ocean conditions are covered in Chapters 2 and 3. Figure credit: The Nature Conservancy. 

Ocean ecosystems are complex and interconnected, making it challenging to fully understand and anticipate 
climate-induced changes. Climate impacts are less well documented for certain ecosystem components, 
even ubiquitous organisms such as microbes39 and pathogens.40,41 Additionally, climate drivers impacting 
ocean ecosystems often act in complex ways and, in some cases, can originate on land. For example, altered 
precipitation patterns over the continental US have both reduced river flow in the Pacific Northwest and 
increased flooding on the Mississippi, inducing population declines in iconic species such as Chinook 
salmon42 and Gulf of Mexico oysters,43 respectively. Coastal “blue carbon” ecosystems, including coral reefs, 
seagrass and seaweed beds, mangrove forests, and tidal marshes, are also impacted by interactions between 
land- and ocean-based changes,44,45 and these effects can extend to deep-sea ecosystems (Focus on Blue 
Carbon).46,47 While US coastal and shelf ecosystems are relatively well studied, the deep ocean (below 650 
feet) remains poorly studied.48,49 The deep ocean stores and absorbs a vast quantity of carbon and heat, 
buffering the impacts of climate change but also resulting in warming and changes to biogeochemistry 
(such as deoxygenation) in this portion of the ocean (KMs 2.1, 3.4),13,49,50 potentially impairing the health of 
deep-sea ecosystems and the capacity for carbon sequestration.51
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Ocean climate impacts affect many communities, from coastal inhabitants who make a living from ocean 
industries to people who live far from the shore and eat fish in the US Midwest or vacation at Gulf Coast 
beaches. For example, harmful algal blooms (HABs) and increases in pathogens, such as Vibrio species, have 
become more prevalent in some regions, resulting in beach and fishery closures and impacting people’s 
health and livelihoods.52,53 Effects are amplified for Indigenous Peoples whose long-standing social, cultural, 
and spiritual connections to the ocean are being altered.54,55 Subsistence harvests that are critical for food 
and nutritional security have been disrupted by shifts in species distributions, sea ice loss that limits access 
to resources, and HABs that make food sources such as razor clams, Pacific walruses, and bowhead whales 
unsafe for human consumption (KMs 16.1, 29.5).56,57,58,59,60,61,62,63 Cumulatively, these changes threaten to break 
vital social and cultural connections by undermining food security and the mental and physical health and 
well-being of marine resource users.59,64,65,66

As impacts of climate change mount, species and people are beginning to adapt. Examples of observed 
adaptations include species shifting distributions as they track preferred temperatures67 and subsistence 
harvesters changing what, where, and when they harvest.68 The largest and fastest adaptation responses 
have followed climate impacts that occur as extreme events (e.g., heatwaves, HABs, hypoxia) or that amplify 
background risks and pressures (e.g., habitat degradation, resource overexploitation; Box 10.1).69,70 

Projected Changes
Cumulative GHG emissions will continue to affect marine ecological and social systems over the coming 
decades. Changes in physical and biogeochemical conditions, including temperature, stratification, 
upwelling, and ocean chemistry, are projected to become stronger and more widespread, particular-
ly for higher scenarios (KM 2.3),71 and interactions with chronic stressors such as habitat degradation or 
overfishing will amplify ecosystem impacts.10 Shifts in the distribution and biomass of marine species, 
changes in food web structure and ecosystem functions, and increases in HABs and pathogens will be 
more pronounced under very high scenarios (RCP8.5, SSP5-8.5).72,73,74,75 Climate change will drive physical 
and biological systems toward critical tipping points, triggering feedbacks that may threaten biodi-
versity, undermine system stability, permanently alter ecosystem functions and services, and limit 
adaptation options.76,77,78,79

Continued climate-driven changes pose challenges for social, economic, and governance systems, par-
ticularly those based on expectations that historical conditions will persist into the future. Shifting fish 
distributions are creating jurisdictional challenges for area-based management, undermining commercial 
fishery management approaches,80 and jeopardizing treaty resources such as Tribes’ rights to “usual and 
accustomed” fishing grounds.81 The severity of impacts to marine social–ecological systems will depend on 
peoples’ ability to adapt at the pace of climate change, which will require participatory governance systems 
that can effectively and equitably adjust to shifting circumstances. 
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Box 10.1. Cascading Impacts of a Marine Heatwave

A massive marine heatwave originated in the Gulf of Alaska in the winter of 2013/14 and subsequently encompassed the 
US West Coast from 2014 to 2016, producing the region’s highest three-year average ocean temperature on record.82 This 
event, driven by a combination of natural variability and human-caused warming,82 had widespread impacts on ocean hab-
itat, marine species, and human communities (Figure 10.2). These cascading impacts are illustrated by a chain of events 
in which, initially, cool-water habitat was compressed along the coast, causing whales to move closer to shore to feed. 
This shoreward shift resulted in whales foraging in Dungeness crab fishing grounds and becoming entangled in fishing 
gear.83 Meanwhile, the warmer ocean and altered ocean chemistry enabled an unprecedented harmful algal bloom.61,84 De-
tection of the neurotoxin domoic acid in marine species closed fisheries, delayed opening of the crab fishing season, and 
led to multiple fishery disaster declarations.61 Faced with suspension of the fishing season, fishers were forced to forego 
revenue or shift to other fisheries;85 adverse impacts were more pronounced for fishers with smaller vessels, who suffered 
disproportionately large declines in participation and revenue.86 Finally, when the Dungeness crab fishing season opened 
late, increased fishing coincided with the migratory arrival of whales, producing another spike in entanglements.83 Cli-
mate shocks like the 2014–2016 marine heatwave amplify environmental and economic impacts that can linger beyond 
the event itself.70 Under future ocean warming, heatwaves will become even hotter, with historically rare temperatures 
occurring more frequently (KM 2.2). The increasingly novel ocean conditions in the California Current system87 and other 
regions will lead to more climate surprises that create challenges for planning and decision-making.88
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Northeast Pacific Marine Heatwave Impacts

The West Coast has experienced unprecedented warm ocean temperatures and environmental disruptions from 
marine heatwaves. 

Figure 10.2. Heatwaves have caused extensive disruptions to marine ecosystems and, in turn, to human commu-
nities and economies. Shown here are the widespread impacts of a massive marine heatwave that began in the 
Gulf of Alaska and subsequently covered the entire West Coast, persisting for several years and coinciding with 
severe drought over land. Icons on the timeline indicate when impacts occurred; many impacts were sustained 
for months or years but, for clarity, are shown only at a representative time when they were particularly prevalent. 
Impacts described as coast-wide or without a specific location occurred off all West Coast states: Alaska, Wash-
ington, Oregon, and California. Fishery disasters, as determined by the US secretary of commerce, are shown for 
individual species (Pacific sardine, Pacific cod) or groups of species (salmon, crab). While the largest heatwave 
dissipated by 2017, effects of the 2014–2016 heatwave have persisted in the form of lasting ecological changes 
and new adaptation measures designed to mitigate negative impacts in the future. Figure credit: NOAA Southwest 
Fisheries Science Center.
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Key Message 10.2  
Climate Change Is Altering Marine-Related Economic Activities 

Climate change poses a substantial risk to ocean-related industries and economic activities 
such as fisheries, tourism, recreation, transportation, and energy (high confidence). As climate 
change continues, economic and cultural impacts are expected to become larger and more 
widespread, especially under higher scenarios and in communities that are highly dependent 
on ocean resources (very high confidence). A range of approaches can facilitate adaptation to 
some degree of climate change (medium confidence), but higher levels of climate change will 
limit the success of adaptation measures and markedly increase climate risk to marine-related 
economic activities (high confidence). 

From energy to fisheries to tourism, the ocean economy is deeply intertwined with the economic health 
of the United States (Figure 10.3). Populations in shore-adjacent counties grew 5.3% from 2010 to 2019, 
with employment increasing three times as fast (16.3%). From 2005 to 2019, the ocean-related GDP grew 
by nearly 60% (in constant dollars), representing a total of 3.5 million jobs.89 Ocean-based activities and 
industries are being affected by climate change,90,91 and future impacts may slow growth of the ocean 
economy. Limiting global warming to 1.5°C (2.7°F) above preindustrial levels confers clear social and 
economic advantages compared to higher scenarios.92,93 
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Ocean-Based Economies

Communities throughout coastal America rely on ocean-related industries for major shares of their local 
economies.

Figure 10.3. Ocean industries such as fishing, shipping, and tourism are important economic activities in coastal 
communities across the United States. The Nation’s continental shelf is a major source of energy from oil and gas, 
and renewable energy, particularly offshore wind, is being developed in multiple areas. The ocean-based economy 
is even more critical to the island commonwealths and territories in the Pacific and Caribbean, although economic 
data comparable to that for the 50 US states are not available. Economic dependence on ocean resources is pro-
portionately highest in rural communities, which have fewer economic alternatives if they experience climate-re-
lated disruptions.94,95 Figure credit: Middlebury Institute of International Studies, NOAA NCEI, and CISESS NC.

Commercial Fisheries
Climate change has impacted commercial marine fisheries in every region of the US by altering the avail-
ability and quality of harvested species, destabilizing fisheries-related revenue and employment, and 
inducing new management challenges.15,69,85,96,97 The large-scale redistribution of highly valuable Bering 
Sea (Alaska) Pacific cod and snow crab and subsequent declines in multiple stocks, including closure of 
the snow crab fishery in 2022, followed low sea ice conditions and protracted warm bottom temperatures 
across the region (Box 10.1).98,99,100,101,102 On the East Coast, the northern shrimp fishery collapsed and a fishing 
moratorium was imposed following a marine heatwave in 2012,103 and the highest-valued single-species 
fishery in the US, American lobster, has seen the southern portion of its population decline to very low 
levels with warming waters.32 Disaster declarations for commercial fisheries increased markedly from 1994 
to 2019, with more than 84% of fishery disasters linked to extreme environmental events, totaling $3.4 
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billion of lost revenue and $2.3 billion (in 2022 dollars) in federal funding for disaster relief.104 Recent cli-
mate-related fishery declines have been widespread,85,105,106 although a few stocks have increased with ocean 
warming and heatwaves (e.g., regional increases in the northern stock of American lobster, market squid, 
and sablefish32,107,108). While climate is not the sole driver impacting fish populations, it is an added stressor 
that exacerbates other negative impacts.33

Over the next century, climate change is expected to reduce catch in all US regions,92 including some of 
the highest-valued fisheries (e.g., Bering Sea snow crab, walleye pollock, Pacific cod, American lobster, and 
Atlantic sea scallops32,109,110,111,112). For 16 species that represent more than half of commercial fisheries revenue, 
climate-induced changes are projected to result in billions of dollars of economic losses by 2100, with losses 
twice as high under a very high scenario (RCP8.5) than an intermediate scenario (RCP4.5).113 Many species 
will continue moving northward and deeper, reducing accessibility for subsistence harvesters and smaller 
vessels and complicating management policies and quota allocations.114,115,116,117,118 Severe storms and sea level 
rise will increasingly threaten shoreside infrastructure and transportation networks that are critical for 
harvesting and distributing seafood products (KM 9.1).4,119

Climate impacts are not distributed equally across all fisheries and can be compounded by non-climate 
factors, including fisheries management, market conditions, socioeconomic conditions, and external shocks 
(e.g., COVID-19).4,86,115,120 Impacts are generally greater for small-scale coastal harvesters who are less able 
to follow shifts in fish distribution or who have access to a limited number of fish stocks, while those with 
larger vessels and more diverse harvest portfolios are generally more resilient.85,86,118,121 Commercial fisheries 
and subsistence harvesters are adapting to these changes through short-term incremental measures, 
business investments appropriate for changing conditions, and management efforts supporting cli-
mate-ready fisheries (Figure 10.4).96,122,123

The effectiveness of future adaptation responses may be limited by the magnitude of change and factors like 
inequities in finance and governance across communities, costs of equipment or infrastructure, and access 
to fishing permits (Focus on Risks to Supply Chains).80,97,115,124 As fisheries adapt, community initiatives such 
as permit banks and seafood cooperatives that plan for climate change can enhance equitable opportunities 
and socioeconomic benefits (Figure 10.4).125,126 Diversifying harvest and livelihoods, including expanding into 
marine aquaculture (KM 11.1), can also help stabilize income or buffer risk. Tools that predict species distri-
bution changes can help avoid bycatch, reduce costs, and increase yield.127 Further, ecosystem-based and 
climate-informed management can align harvest limits with population productivity to maintain sustainable 
fishing levels.109,110,128 
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Ocean-Related Climate Adaptation Strategies

Adaptation can occur at many organizational scales—from individuals to governance systems. 

Figure 10.4. Many types of adaptation measures are being undertaken, or are under consideration, as ways to 
respond to and prepare for climate change impacts on ocean activities and economic sectors. The measures 
range from small adjustments (incremental) to larger actions within current socioeconomic and management sys-
tems (systemic) and substantial changes beyond existing systems (transformative). Figure credit: Gulf of Maine 
Research Institute. 

Tourism and Recreation
Ocean-based tourism and recreation—the largest sector in the ocean economy, representing $274.5 
billion of economic activity in 2021 (in 2022 dollars)1—is both positively and negatively impacted by climate 
change.129 Warming temperatures extend the coastal tourism season, yet sea level rise threatens shoreside 
facilities (KM 9.2) and will change nearshore wave dynamics in ways that reduce or eliminate some surfing 
opportunities.130 In the Gulf of Mexico and Caribbean, worsening HABs131 and blooms of macroalgae (e.g., 
Sargassum132) due to climate and local non-climate stressors have raised human health concerns (KM 23.1) 
that have disrupted tourism and fishing.133,134 Recreational fisheries are experiencing climate-related changes 
in anglers’ participation, location choices, and expenditures.135 As warming continues, angler participation 
may decline by up to 15%, with losses as high as $413 million annually (in 2022 dollars) along the Atlantic and 
Gulf of Mexico Coasts; however, warming is increasing participation in some areas (e.g., New England).136

Similarly, tourism impacts are different across regions. Arctic sea ice loss is creating tourism opportunities 
by allowing “last-chance” cruise ship tourists to see ecosystems before they are further altered by climate 
change.137 However, coral reef tourism—valued at nearly $3 billion annually for 2008–2012 (in 2022 dollars) 
in Hawai‘i and Florida—is threatened by bleaching and disease that deter divers and snorkelers (KMs 23.3, 
30.4).138 At a more localized scale, the loss of endangered southern resident orca whales in Washington’s 
Puget Sound due to climate-driven declines in food would result in annual losses of $39 million in economic 
activity (in 2022 dollars).36,139
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Transportation
Climate change is already affecting marine transportation. Sea ice loss and longer open-water seasons have 
enabled transit between the Atlantic and Pacific via the Arctic, with ship traffic in the Arctic increasing 
threefold between 1990 and 2015,140,141 and Arctic-routed shipping continues to be considered.142 With 3.6°F 
(2°C) of warming above preindustrial levels, ships are projected to be able to reliably navigate the Northwest 
Passage and Arctic Bridge trade routes in summer.143 These routes may reduce carbon emissions and 
shipping costs, but concerns exist about impacts to marine species and local communities, as well as about 
black carbon emissions.54,144,145,146 

Commercial vessel emissions have increased over time, as has the sector’s proportional contribution to 
global emissions (KM 13.1),147 but emissions from recreational boats in the US declined between 1990 to 
2021.148 The shipping sector is initiating further measures to reduce its GHG emissions by powering docked 
vessels with electricity,149 increasing vessel efficiency to reduce global shipping emissions by 50% by 2050,147 
and planning for some zero-emissions maritime routes by 2025.150

Energy
Ocean-based energy production in the US is in a period of transition. Ocean-based energy has been almost 
exclusively derived from hydrocarbon extraction, which generated $96.4 billion in 2021 (in 2022 dollars).1 
Globally, nearly 30% of commercially recoverable oil and gas assets are found in areas at high risk for 
climate impacts.151 In the US, stronger hurricanes, increasing wave heights, and sea level rise will threaten 
offshore facilities and associated coastal structures, such as underwater pipelines and refineries (KM 
9.2).152,153 Facilities may increasingly require adaptive responses, such as raising the height of oil and gas 
platforms in the Gulf of Mexico to reduce hurricane damage.154,155 

Renewable energy sources are expected to increase as part of the ocean-based energy mix over the next 
several decades. The first US facilities to generate electricity from ocean wind are in place off the Atlantic 
Coast, and in 2021, the US set a goal of installing more than 30 gigawatts of capacity by 2030, enough to 
power about 10 million homes.156 States have set additional goals for offshore wind energy development 
that may further advance this capacity. Through 2022, more than two million acres of ocean bottom have 
been leased for wind energy, with more leases anticipated by 2025.157 The growth of ocean-based renewable 
energy is expected to bring jobs and economic benefits to certain coastal communities, but its ecosystem 
impacts are still being determined, and its development may constrain other ocean uses, including fishing, 
transportation, and aesthetic preferences.158,159,160,161,162 
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Key Message 10.3  
Our Future Ocean Depends on Decisions Today

Future risks to marine ecosystems, ocean resources, and people will be substantially reduced 
by implementing adaptation and mitigation actions now (very high confidence). Responding 
swiftly to climate change will improve outcomes, reduce costs, promote resilience and equity, 
and allow the widest possible suite of adaptation solutions (very high confidence). Impacts will 
continue to be uneven across communities, with more harmful outcomes in communities that 
are highly ocean-reliant and historically marginalized, unless equitable adaptation and miti-
gation efforts are implemented (high confidence).

Current State of Ocean-Based Adaptation and Mitigation
Although substantial climate-driven changes in ocean ecosystems are inevitable over the coming 
decades (KM 2.3), the future of these systems, their valuable services, and the businesses, communities, 
and economies that depend on them will be determined by the choices we make now on mitigation of 
GHG emissions and investment in adaptation measures (Figure 10.5). Proactive, coordinated, large-scale 
approaches to planning, financing, and implementing adaptation measures are necessary to achieve 
effective and equitable outcomes (KM 31.2).10 Reactive actions to cope with climate impacts are occurring at 
individual, business, and community scales but are largely uncoordinated and sometimes ineffective (Figure 
10.4). Adaptive capacity is not the same across communities or groups; communities that are highly reliant 
on ocean resources may face the greatest risks and be constrained by socioeconomic factors, historical 
and ongoing inequities, and access to governance systems or financing.4,5,163 Promising proactive adapta-
tion-planning measures are starting to emerge in various regions and sectors. For example, some state and 
federal fishery-management bodies and stakeholder communities have prioritized climate preparedness 
and are developing information, tools, plans, and processes to address future changes and uncertainty in 
marine resources and fisheries.164,165 Certain municipalities and Tribal communities are pursuing integrative 
climate resilience planning that considers adaptation needs across multiple ocean-related sectors (e.g., 
Cities of Portland and South Portland 2021;166 Takak et al. 2021167). 

Various ocean-based mitigation approaches are also advancing.168 Measures to protect and restore marine 
ecosystems that capture and store carbon dioxide—such as mangroves, seagrasses, and kelp forests—are 
underway and offer additional benefits like wave energy dissipation and fisheries enhancement, but carbon 
mitigation benefits may be modest and variable (Focus on Blue Carbon).10,169 Public- and private-funded 
projects are evaluating technical, economic, and social dimensions of ocean-based carbon dioxide removal 
techniques (KM 32.3; Focus on Blue Carbon).170,171,172,173,174 Ocean-based wind energy is being implemented 
(KM 10.2) and wave energy conversion is being developed, especially in the Pacific basin.175 Electric and 
hybrid engines for small boats176 and expanded production of aquatic foods with lower GHG emissions177 
also support ocean-based mitigation. Estimates suggest that fully scaled-up ocean-based mitigation 
measures would provide about a quarter of the atmospheric GHG reduction required to meet global pledges 
by 2050.172,176,178
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Ocean Conditions and Activities Under Two Climate Scenarios

Future ocean conditions and activities will depend on emissions levels and mitigation strategies.

Figure 10.5. Future marine ecosystems and human activities will differ under low versus high greenhouse gas 
emissions scenarios. This figure is a simplified depiction of major predicted changes as a result of climate 
change. Under low scenarios (left), more adaptation options remain available, and ocean services such as food 
provision and coastal protection are maintained, but trade-offs between ocean-based activities will escalate. 
Under high scenarios (right), ecosystems will be altered, fewer adaptation options will be available, and losses 
of services are expected across diverse sectors. Figure credit: Center for American Progress and Gulf of Maine 
Research Institute.

Challenges and Trade-Offs
Immediate implementation of ambitious mitigation and adaptation measures offers the greatest chance 
of maintaining ocean ecosystems and their benefits to people, as well as supporting equitable human 
development.10 Carbon emissions peak in the mid-2020s in scenarios that limit warming to less than 3.6°F 
(2°C), above which risks and impacts are projected to rapidly increase across sectors and regions.179 Without 
carbon mitigation, estimates indicate that a critical global warming threshold of 2.7°F (1.5°C) will be crossed 
in the 2030s.179

Coordinated adaptation planning is essential to ensure that strategies across sectors, communities, and 
regions are complementary and achieve equitable outcomes. Adaptation and mitigation options tend to be 
most successful if they are based on sound information, developed in collaboration with local communities 
and diverse actors, and designed to lower ecosystem and community risk.10,180,181 Although adaptation 
measures are already being taken in some areas (KM 10.2), the ability to adapt is uneven across groups, 
communities, and sectors (KM 31.2). People with socioeconomic assets such as strong social connections, 
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alternative livelihood options, and economic wealth are more resilient to climate disruptions,6,85,86,182 
and those with greater access to information and other resources will be better positioned to engage in 
adaptation efforts. Participatory planning, financial, and governance processes designed to account for 
divergent power dynamics and institutionalized discrimination can engage a broad array of community 
members in co-producing climate solutions.181 Deliberately incorporating local knowledge, perspectives, and 
values can help determine efficient, enduring, and equitable adaptation and mitigation solutions.8,180,181

Effective climate change adaptation in marine systems also depends on implementation of carbon 
mitigation. Without emissions reductions, the range of possible adaptation options decreases substantially. 
For example, adaptation options in coral and mangrove ecosystems include reducing non-climate stressors 
such as pollution and prioritizing effective harvest management and habitat restoration. With increased 
emissions, these measures will become insufficient to maintain coral and mangroves due to warmer, more 
acidic conditions, and adaptations will be limited to more expensive, higher-risk options such as active 
translocation of species, assisted adaptation, or reef shading.183,184 As emissions increase and the range of 
options for maintaining these habitats decreases, the risks of losing services they provide, such as coastal 
protection, livelihoods, food security, cultural identity, and tourism, are magnified.10

Adaptation measures with co-benefits for mitigation are especially promising. These include reef and marsh 
restoration, seaweed aquaculture, ecosystem-based management, and marine spatial planning. Nature-
based solutions have the potential to be cost-effective and self-reinforcing over time, and if implemented at 
scale, they may impart climate, societal, and ecological benefits for adaptation and carbon mitigation.185,186,187 
Solutions that include equity and diversity targets and are designed through inclusive and participatory 
approaches have the greatest potential to both address ongoing injustices and impart benefits for marine 
resource users and Indigenous communities.180,188 

Emerging technologies could further expand ocean-based mitigation, but significant uncertainties must be 
resolved. Research projects are exploring the design, manufacturing, and grid integration of wave, thermal, 
and tidal energy-capturing devices.189 Electricity and scalable zero-emission fuels such as hydrogen are 
being evaluated for decarbonizing oceangoing vessels.190 All ocean-based carbon dioxide removal techniques 
still require substantial research on scalability, durability of carbon storage, environmental and social 
impacts, governance, and financing, as well as development of suitable regulatory frameworks.169,172,191

Trade-offs among adaptation and mitigation activities, ecosystems, and social systems may become more 
challenging as more options are deployed. Ocean-based mitigation measures such as offshore wind or 
carbon dioxide removal could have environmental and economic impacts.161,192 Mitigation infrastructure may 
affect existing activities, including fishing, boating, and shipping—which are themselves adapting to climate 
change.193 Decision-making about mitigation and adaptation choices—for example, those around dispropor-
tionate environmental burdens borne by historically marginalized racial and ethnic groups or communities 
with fewer economic resources—also poses ethical challenges.194 These ethical challenges may be greater for 
actions related to the ocean, given its complex governance systems.195 

Needs and Opportunities
Ocean-related efforts to mitigate and adapt to climate change generally lag terrestrial efforts for several 
reasons, including gaps in ocean observations, lack of robust forecasts and projections, and limitations in 
mechanistic understandings of underlying climate-related changes. The ocean sector also faces challenges 
related to missing tools and services for adaptation, sector-specific (or siloed) management and governance, 
insufficient financing, and divergent stakeholder goals.10 Providing equitable access to information from 
scientific research and local knowledge, promoting evidence-based planning and adaptive management, and 
implementing actions to address near- and long-term risks can help prepare for climate impacts to marine 
ecosystems and resources.
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Data and Research
Effective and cost-sensitive responses to changing oceans entail tracking changes in social–ecological 
systems and using that information to address risks. Strategic expansion and coordination of ocean 
observations and long-term monitoring programs (inclusive of community science) are necessary to 
document changes across marine ecosystems.196,197,198,199 Indigenous and local knowledge of ecosystem 
changes can be more fully integrated with other knowledge sources to support decision-making for ocean 
ecosystems.180,200,201 Key limitations remain in tracking, understanding, and projecting changes in marine 
ecosystems and impacts on people and economies. In particular, limited data are available in the US 
Caribbean and US-Affiliated Pacific Islands. Moreover, few coordinated monitoring and information-devel-
opment efforts span regional or international boundaries.202

Climate-relevant economic and social data are not available at temporal and geographic scales necessary for 
tracking how climate change impacts on the ocean affect people. Socioeconomic data, such as the number 
of people using the ocean for recreation, are lacking or exist only at large geographic scales that do not 
support analyses of local impacts or evaluation of the effectiveness of adaptation strategies.203,204 Further, 
the lack of socioeconomic data precludes efforts to understand disparate impacts of and responses to 
climate change on communities of different sizes and income levels. 

Data-Informed Management and Adaptation
Responses to climate impacts are most successful when they incorporate robust scientific information into 
decisions, which can be supported by research and products that are designed with end users.205 Increased 
data accessibility and technical expertise focused on interpreting climate impacts and adaptation effec-
tiveness will facilitate novel research and help deliver information that is relevant to decision-makers and 
stakeholders. Continued advances in near-term to decadal forecasts are urgently needed to provide deci-
sion-makers with early warnings and shape options that are incorporated into response plans, particularly 
for extreme events such as marine heatwaves, coral bleaching, HABs, or fish population changes.206,207,208,209,210 
Mid- and longer-term projections of changes in ocean ecosystems are necessary to support risk 
assessments and strategic planning.211,212 Development of operational ocean modeling and decision support 
systems is a promising step to provide decision-makers with science-based information to implement 
adaptation measures.122,210 

Governance and Financing 
The extent of future climate impacts will depend both on the nature and magnitude of climate-related 
changes and on the degree to which individuals, businesses, communities, and governments can adapt to 
those changes.213 The pace, scale, and scope of expected climate impacts on ocean ecosystems necessitates 
assessing the ability of existing governance and management frameworks to effectively respond. There is 
also a need for financial incentives to develop and implement mitigation and adaptation actions, including 
support for community and sectoral adaptation. Adaptation and mitigation choices inevitably result in 
trade-offs that affect possible outcomes, implementation costs, and entities that bear the costs or receive 
the benefits.168 Inclusive and participatory frameworks for evaluating these trade-offs will support equitable 
deliberations about potential outcomes and uncertainties surrounding specific options. Such processes are 
especially critical for Indigenous communities with strong sociocultural connections to marine ecosystems 
and subsistence harvesters who rely on marine resources for food, nutritional, and economic security.5,214 
Adaptive governance systems and cross-sector, cross-scale coordinating mechanisms can help advance 
actions that are acceptable to multiple stakeholders.213
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Traceable Accounts 
Process Description 

Author Selection 
Chapter leadership considered suggestions from the Federal Register Notice process and their own 
networks to identify authors with topical expertise, geographic familiarity, and disciplinary perspectives 
that span many issues relevant to the chapter. The goal was to build a diverse team in terms of racial, ethnic, 
and gender diversity; career stage; involvement in past climate assessments; and representation from the 
academic, governmental, and nongovernmental sectors. Seventeen invitations were issued, from which a 
team of eight authors was assembled, including physical scientists, marine ecologists, fishery scientists, 
economists, and policy analysts with experience assessing climate impacts on marine ecosystems, fisheries, 
marine economies, and coastal communities. Authors also have expertise in conservation approaches, 
adaptation strategies, and management measures that may buffer climate change impacts, and several 
authors are engaged in research and policy analysis related to ocean-based climate mitigation options.

Literature Review and Public Engagement
Chapter authors reviewed the Fourth National Climate Assessment (NCA4) “Oceans and Marine Resources” 
chapter215 and brainstormed topics for NCA5 that had emerged since then or were not well covered in NCA4. 
The chapter lead identified additional topics from the US Global Change Research Program (USGCRP) 
assessment review document and public comments. The importance of certain topics was reinforced and 
additional topics were identified during three public engagement workshops organized by USGCRP (January 
25, 2022), the American Fisheries Society (February 1, 2022), and the Ocean Sciences Meeting (February 24, 
2022). Initial topics were subsequently honed through agency review and public input. The author team 
routinely reevaluated the literature to incorporate scientific advances into the assessment and prioritize 
topics that could be covered within the space limitations.

Decision-Making Process
The chapter team held biweekly to weekly videoconferences to hone the chapter’s topics, Key Messages, and 
supporting information based on discussions of the state of the science. Small groups of authors developed 
text associated with each Key Message based on their expertise, literature review, and stakeholder input. 
The full author team reviewed each Key Message and its supporting information, and revisions were made 
until the team was satisfied with the text. The lead author administered a survey to elicit detailed input from 
each author on the high-level Key Message statements and the associated confidence and likelihood ratings. 
Differences in phrasing and ratings were discussed among the author team, and revisions were made until 
the group reached consensus on the content of those statements. 
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Key Message 10.1  
Unprecedented Climate Impacts Threaten Ecosystems and Human Well-Being 

Description of Evidence Base
A robust body of evidence shows that climate change is having major impacts on US marine ecosystems. 
Changes in physical and chemical ocean conditions (Chs. 2, 3)10,12 affect species through distribution shifts, 
productivity changes, and phenology alterations.15,16,18,19 In shallow-water habitats (coral reefs, seagrass beds, 
and kelp forests), climate-related declines have been documented,20,22 but limited evidence is available to 
assess impacts in the deep sea.49 In certain places (e.g., Arctic and coral reef habitats), thresholds are being 
reached, beyond which ecosystem functions will be eroded and systems will be permanently altered.22,58

Evidence documenting climate impacts on marine-dependent human communities and alterations in 
cultural and social interconnections, economies, and livelihoods is growing. Climate-driven ecosystem 
changes threaten critical social couplings that underpin the well-being, subsistence, and economic and 
cultural identities of many communities with strong ties to the ocean, particularly coastal and island-based 
Indigenous communities (KMs 29.5, 30.5).54,163 Climate change has profoundly impacted Indigenous harvest 
of marine species, including those critical for subsistence.54,56,60,62 Indigenous Knowledge continues to reveal 
the breadth of climate impacts on human health, ecosystems, and subsistence resources, as well as the 
effectiveness of adaptation measures.57,62,63

Evidence of future ecological and social impacts draws on climate projections to extrapolate contempo-
rary responses into the future. Model projections show consensus on the direction of many physical and 
chemical changes (e.g., warming temperature, declining pH; KM 2.1).179 Based on observed responses of 
species to environmental conditions and known physiological limits, populations and distributions are 
expected to be substantially altered by climate change.10,72,75,78 Impacts of marine ecosystem changes on 
humans are expected to increase as the conditions depart further from past conditions, although the 
magnitude depends on the rate of change and capacity for adaptation.213

Major Uncertainties and Research Gaps 
While overall physical and biological trends are well characterized and projected to continue, the exact 
scale, timing, and location of future impacts are uncertain. Uncertainty in the scale of impacts derives 
primarily from unclear future socioeconomic pathways (including greenhouse gas [GHG] emissions). 
Spread among models on the sensitivity of Earth’s climate to socioeconomic futures (KM 2.1) and, in some 
cases, inadequate model resolution to forecast local-scale effects also contribute to uncertainty.212 While 
the severity of extreme events will increase as natural variability occurs on top of a changing baseline (KM 
2.2), we do not know exactly when or where extreme events will occur. Thus, the continued development 
of prediction systems is a priority to extend the lead time of extreme event warnings (e.g., Tommasi et al. 
2017;210 Jacox et al. 2022206). 

Biological and ecological impacts of climate change, such as shifts in species distributions, can be assessed 
based on past observations. However, many existing observation systems were not deployed until recent 
decades,199 with the deep ocean remaining particularly under-observed.216 There is uncertainty associated 
with models of physical–biological relationships and challenges in scaling climate change impacts at the 
individual level to population dynamics, community interactions, or ecosystem functions. Data and studies 
of ecosystems and coupled social–ecological systems become scarce at large or complex scales. 

Research gaps increase across the spectrum of complexity, from physical changes to system-level ecological 
and human impacts.10 Baseline studies vary widely for ocean ecosystems and regions. For example, coastal 
ecosystems are much better observed and studied than the deep ocean, and US regions with the strongest 
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climate signals or occurrence of extreme events (e.g., Alaska, Northeast, West Coast) have been more 
extensively studied than other regions. Few studies are available for assessing climate impacts to marine 
ecosystems, resources, and communities in non-continental US regions, such as Hawai‘i and the US-Affiliat-
ed Pacific Islands and the US Caribbean.

Description of Confidence and Likelihood 
For most elements of this Key Message, the authors have decided not to assign likelihood ratings, as quanti-
tative projections of the impacts discussed are typically focused on a specific species, process, or ecoregion. 
Scaling likelihoods from these focused studies up to a general message is difficult. Statements of likelihood 
are scenario-dependent, and studies may not use the same scenarios or compare scenarios, which limits a 
consistent evaluation of likelihood.

The large and growing literature on climate impacts in marine ecosystems, coupled with attribution 
studies demonstrating that human-caused climate change is driving ocean conditions beyond the 
envelope of historical variability, give very high confidence that we have entered an unprecedented period 
of climate-driven marine ecosystem change.179,213 Studies of biological responses to climate change are 
widespread, but there is somewhat less research documenting how the cascading impacts of physical and 
ecological ocean changes affect human communities. The available information indicates that impacts are 
predominantly neutral or negative, leading to high confidence in our understanding of impacts to livelihoods, 
cultures, food supplies, and other human-ocean connections.10 A number of studies have focused on impacts 
to Indigenous Peoples, indicating very high confidence that climate change is altering ways of life, cultural 
traditions, and connections to the ocean for many Indigenous groups.54,58,68 The scientific literature over-
whelmingly projects that climate-driven changes in social–ecological systems will become more frequent 
and intense as human-caused climate change emerges further from natural climate variability, with the 
greatest impacts under high or very high scenarios.72,75 Because a large evidence base consistently projects 
higher risks to marine ecosystems under higher scenarios, this outcome is considered likely, with very high 
confidence. While there is uncertainty about the pace and effectiveness of adaptation in social–ecological 
systems, there is very high confidence that the risks will be elevated if the pace of adaptation does not match 
or exceed the pace of climate change. The existence of ecological tipping points is supported by theory 
and empirical evidence (e.g., Hoegh-Guldberg et al. 2019;77 Stewart-Sinclair et al. 2020;79 Penn and Deutsch 
202278), and the authors have very high confidence that many systems are moving toward tipping points 
and that some will be crossed in the future. This confidence is highest in ecosystems such as coral reefs 
that are experiencing frequent bleaching events and die-offs10 and in the Arctic, where declining sea ice is 
altering the ecosystem and social–ecological connections (KM 29.5). The authors have high confidence that 
as ecosystems move toward tipping points, interconnected social systems will be fundamentally changed in 
ways that threaten the well-being of people and communities.76

Key Message 10.2  
Climate Change Is Altering Marine-Related Economic Activities

Description of Evidence Base
Studies characterize the observed and projected impact of climate change on US commercial marine 
fisheries. These include temperature impacts on productivity and redistribution of species and dependent 
fisheries, communities, supply chains, markets, and fisheries management.15,69,85,96,97,100,118,121 Commercial 
fisheries and subsistence harvesters are adapting to these changes through shifts in fishing locations, target 
species, harvest diversification, and other strategies, yet adaptive capacity varies across different types of 
harvesters and communities.68,85,118,163 Projections of how climate change will affect fisheries are available 
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for many of the largest US commercial fisheries (e.g., Rheuban et al. 2017;111 Le Bris et al. 2018;32 Holsman 
et al. 2020;110 Moore et al. 2021113). However, the magnitude of impacts differs across models that vary in 
resolution, complexity, and inclusion of regional management measures.109,217 

Several studies characterize temperature- and weather-driven changes to human behavior around tourism 
and recreation,130,135,136 as well as direct impacts to resources that drive tourism.36,138,139 The data needed to 
quantify impacts and benefits of mitigation efforts in the transportation sector are more limited, although 
there has been a strong focus on the Arctic.54,60,140,143 Sea level rise will also threaten ocean transportation and 
shoreside infrastructure (KM 9.2).

Studies have determined that climate change, particularly sea level rise and stronger storms, poses a direct 
threat to ocean-based oil and gas infrastructure,155 as well as an indirect increase in the risk of oil spills due 
to climate change.154 For offshore wind, studies have estimated production capacity and variability off the US 
coasts and described potential impacts to surrounding ecosystems161,192 and existing ocean uses.158,160,162 

Major Uncertainties and Research Gaps 
Scientific literature associated with climate impacts and adaptive responses in ocean-based industries is 
developed and growing for commercial fisheries but is limited for many other sectors. Although tourism 
represents the largest sector of the ocean economy, there are relatively few studies that project climate 
impacts to the US ocean tourism sector at regional to national scales. Those that are available focus on 
specific industries in specific locations, such as cruising in the Arctic,137 coral reef tourism in Florida and 
Hawai‘i,138 and whale watching in Puget Sound.139 Studies of climate impacts on marine recreational fisheries 
are also limited,135,136 particularly compared to extensive studies of commercial fisheries. Efforts to reduce 
GHG emissions from vessels, ports, and shipping are developing,147,149 but limited data availability makes 
it difficult to track associated implementation progress and emission outcomes. Syntheses of the state of 
knowledge related to ecological, economic, and community impacts of the development of ocean-based 
renewable energy are just recently becoming available.159

The greatest limitation in understanding economic and social impacts of climate change on marine-de-
pendent livelihoods stems from the lack of publicly available economic and social data—specifically at 
spatial and temporal scales necessary to track changes, measure impacts, and make projections for marine 
economic sectors.218 This gap constrains efforts to quantify the magnitude of impacts, effectiveness of 
adaptation strategies, and differential impacts and responses across distinct groups. A nascent area of study 
concerns the interacting and compounding ecological, social, economic, and cultural impacts of changes on 
the social–ecological systems with which marine industries interact.

Description of Confidence and Likelihood 
Across numerous studies, there is high agreement and robust evidence, and therefore high confidence, that 
climate change poses significant risk to marine economic sectors and activities. This evidence includes 
various determinations of climate change risk from recent assessment reports with focused chapters 
on marine sectors and communities (e.g., Constable et al. 2022;219 Cooley et al. 2022;10 Hicke et al. 20227). 
Multiple studies have evaluated risk over time under contrasting future carbon mitigation scenarios; high 
agreement in results yields very high confidence that climate change impacts increase over time and with 
higher levels of global warming, posing higher risks to communities and groups that have fewer economic 
alternatives and lower adaptive capacity.179,213 The impacts of ocean-based climate change depend on the 
effectiveness and feasibility of adaptation measures that remain largely nascent,10 leading to medium 
confidence that adaptation measures can help reduce the impacts of climate change. Adaptation options 
narrow and challenges of adaptation increase with greater magnitude and complexity of impacts,7,10 giving 
high confidence in the limits of adaptation under higher scenarios. Quantitative projections of climate 
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impacts on marine economy sectors are few and location-specific, and they do not use multiple or 
comparable climate scenarios; as such, the authors have decided not to apply likelihood ratings.

Key Message 10.3  
Our Future Ocean Depends on Decisions Today 

Description of Evidence Base 
There is abundant evidence that the severity and rate of future climate impacts on ocean systems and 
ocean-reliant human communities will vary based on GHG trajectories, which are the outcomes of societal 
choices (KMs 2.3, 3.1). Local, regional, and sectoral impacts will be influenced by the pace and effectiveness 
of adaptation efforts.10

An increasing number of efforts indicate the potential for ocean-based mitigation and adaptation solutions. 
Advances in mitigation are being realized through the production of ocean-based renewable energy,156,157 
decarbonization of the maritime shipping industry (KM 13.2),147 and expansion of aquatic food systems 
with lower overall emissions (KM 11.1).177 In addition, nature-based solutions such as the preservation and 
restoration of blue carbon ecosystems (Focus on Blue Carbon)220 and carbon dioxide removal techniques 
that leverage ocean systems and enhance the ocean’s natural carbon sink (KM 32.3)172 may offer cost-effi-
cient and effective approaches that support carbon mitigation, climate adaptation, and biodiversity.185,186,221 
However, the benefits for adaptation and biodiversity are presently more clear than long-term benefits 
for mitigation (e.g., carbon sequestration), and more research would be needed to understand scales at 
which mitigation benefits are realized, rates of benefit growth over time, and the effectiveness of specific 
measures relative to other mitigation options.187,222

Even with swift and ambitious reductions in GHG emissions, climate impacts to oceans will continue.179 
Existing studies document how ocean users, economic sectors, and communities in the US are 
reacting to climate impacts with a variety of strategies, including business changes, early warning 
systems, evidence-based management, resilience planning, governance adjustments, and technological 
innovations.10,69,96,122 Disparities are expected because not all individuals and communities are equally able to 
adapt, yet few studies exist to understand the types of disparities that are arising, how they are distributed 
among different communities and groups, and the extent to which they are mediated by factors such as 
social connectivity, wealth, or the diversity of available livelihood options.4,86,182

There is increasing evidence that adaptation strategies that are highly coordinated, planned in advance, and 
applied to larger scales lead to more durable, equitable outcomes.7,10 Regardless of the adaptation approach, 
there is strong and abundant evidence that with continued increases in emissions, the number of effective 
adaptation options will decrease.213 Plentiful and diverse evidence from the US and worldwide indicates that 
future conditions will make it more difficult to maintain ecological, social, cultural, and economic intercon-
nections related to ocean ecosystems.213

Major Uncertainties and Research Gaps 
A greater understanding of the relative benefits and risks of adaptation strategies, conditions that 
influence effectiveness, feasibility of uptake by different groups of people, and implementation costs is 
needed. Limited data and research are available to quantify the socioeconomic impacts of climate change 
and how they vary among communities or groups or to evaluate how social conditions and interactions 
(e.g., economic, governance, or social coordination) influence choices, implementation, and effective-
ness of adaptation options.10 Limits to adaptation are not yet well known for ecosystems, individuals, and 
communities. Whether certain conditions, such as social connectivity, flexibility, socioeconomic assets, and 
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livelihood diversity,4,182 insulate marine resource users from climate impacts and how they can be enhanced 
are still emerging areas of understanding. 

How ocean-based mitigation solutions would affect marine ecosystems, existing uses of the ocean, and 
marine-dependent human communities is not yet well understood. The GHG-reduction potential and 
costs of many ocean-based mitigation options are still highly uncertain, and more information is needed to 
fully assess their effectiveness, scalability, and affordability.169,176 There is an emerging body of information 
about how offshore wind development may affect the surrounding physical and natural system,159 and 
some of these insights may apply to techniques under development, such as ocean carbon dioxide removal. 
Development of new ocean uses is expected to alter access for other activities, but it is unclear how 
adaptation strategies and mitigation measures may influence ocean use patterns and the types of users who 
may be advantaged or disadvantaged by these changes.193

The strong relationship between ambitious mitigation and a larger portfolio of effective adaptations is 
recognized across many ecosystems and sectors. However, data exist for only a limited number of ocean 
ecosystems, such as warm-water coral reefs and mangroves,10 and additional ocean-focused studies would 
improve understanding. There is relatively little information on trade-offs among adaptation choices 
or interactions between ocean-focused adaptation, mitigation, and prevailing social conditions. These 
connections are mainly derived from analogy with coastal and terrestrial systems, where evidence about 
human–natural system decision-making tends to be more available.

Description of Confidence and Likelihood 
Across a range of studies, climate change impacts are affecting marine social–ecological systems, and 
risks are projected to increase in the future.213 Projections consistently indicate that risks to marine social–
ecological systems are lower under climate scenarios that achieve high mitigation and adaptation and that 
are implemented sooner, yielding very high confidence in this pattern of outcomes.10 A broader array of 
adaptation options will be preserved if they are implemented sooner and keep pace with the rate of climate 
change impacts,7,10 giving very high confidence that earlier adaptation will enhance outcomes and reduce 
costs. Impacts are being observed in communities that heavily depend on marine resources and have limited 
capacity to adapt, including Indigenous communities, resource-dependent economies, and smaller-scale 
fisheries.58,68,86,118,163 These studies give high confidence that impacts are uneven and that intentional consider-
ations that promote equitable mitigation and adaptation are required to reduce disproportionate impacts.
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