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Introduction
Good air quality is vital to human health and the environment. Ozone and fine particulate matter (PM2.5) are 
air pollutants with widespread health and environmental effects that derive from emissions from a variety 
of natural and human-caused sources, including industry, power plants, vehicles, and agriculture. Ozone is a 
colorless gas that forms in the atmosphere from emissions of other compounds. At ground level, ozone is a 
powerful oxidant that, when inhaled, affects the respiratory and cardiovascular system, causing a wide range 
of health outcomes including lung damage and premature mortality.1,2 It also damages crops and natural 
vegetation.1,3 PM2.5 is defined as airborne particles with a diameter of 2.5 micrometers and smaller—about 
30 times smaller than the width of a human hair. These small particles can be inhaled into the lungs, leading 
to health problems including cardiovascular disease, adverse birth outcomes, neurological disease, and 
increased risk of death.4,5,6,7,8,9,10 PM2.5 is a complex mixture of solid and liquid substances,11 including particles 
emitted directly from combustion and those formed in the atmosphere from gases emitted from natural 
and human sources. PM2.5 also contributes to regional haze, which can impair enjoyment of scenic vistas, 
including in national parks.

Ground-level ozone and PM2.5 have declined in the US due to programs that lowered emissions. From 2000 
to 2020, extreme ozone levels (98th percentile) declined by 18%,12 and annual average PM2.5 concentrations 
declined by 41%.13 Continued reductions in human-caused emissions are projected to bring still cleaner air 
in the US.14,15

Despite these improvements, in 2021 nearly 102 million people lived in areas where pollution levels exceeded 
health-based air quality standards.13 Estimates of annual US deaths from exposure to ambient ozone and 
PM2.5 range from about 60,00016—more deaths than from either motor vehicle accidents, kidney disease, 
breast cancer, or prostate cancer—to 260,00017,18,19 or more,20 valued at $750 billion to $3 trillion (in 2022 
dollars).21,22 Air pollution damages to US crops are estimated at approximately $12 billion annually (in 2022 
dollars).23 The negative impacts of air pollution are not distributed equally, with communities of color and 
low-income communities disproportionately burdened.24,25

Climate change, driven mainly by human greenhouse gas (GHG) emissions that are not harmful to breathe 
at typical atmospheric levels, affects air pollutant concentrations through multiple pathways (KM 14.1) 
including wildfire smoke (KM 14.2) and affects aeroallergens (KM 14.4), with effects on health. Air pollutants 
also affect climate (KM 3.1), and the main sources of air pollutants are also the main sources of GHG 
emissions, suggesting that there is opportunity to address climate and air quality goals simultaneously (KM 
14.5). Current inequities in air pollution exposure may be alleviated or worsened by the impacts of climate 
change and actions to reduce GHG emissions (KM 14.3).

Key Message 14.1  
Climate Change Will Hamper Efforts to Improve US Air Quality

Climate change is projected to worsen air quality in many US regions (medium confidence), 
thereby harming human health and increasing premature death (very likely, high confidence). 
Extreme heat events, which can lead to high concentrations of air pollution, are projected to 
increase in severity and frequency (very likely, very high confidence), and the risk of exposure 
to airborne dust and wildfire smoke will increase with warmer and drier conditions in some 
regions (very likely, high confidence). Reducing air pollution concentrations will unequivocally 
help protect human health in a changing climate.
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Air pollution concentrations are determined by natural and human-caused emissions and by atmospheric 
conditions, including temperature, humidity, and winds. Climate change is projected to worsen air quality 
in many regions, harming human health. Some of the largest increases in PM2.5 and ozone exposure are 
expected in heat- and drought-prone regions (Figure 14.1) and in areas where vulnerable populations live 
(KM 14.3). For example, increasing heat and drought already contribute to more frequent wildfires and 
associated smoke episodes (KMs 14.2, 7.1). Severe climate change, with a US average warming of 9°–14°F, 
would increase annual US air pollution–related deaths by about 25,000 in 2100, relative to 2000.26,27 This 
estimate assumes population growth but no change in emissions, including wildfire smoke. Given that 
wildfires and smoke PM2.5 are projected to increase in a warmer climate (KM 14.2), this mortality rate may be 
an underestimate.

Climate change is expected to alter meteorology over the US in several ways that will directly degrade 
air quality (Figure 14.1). For example, ozone levels are higher on warm, sunny days because the chemical 
reactions that produce ozone speed up with temperature and sunlight. Exposure to these short-term ozone 
episodes has been linked to increased mortality.28 Some gases that produce ozone and PM2.5 come from soils 
and vegetation, and these emissions are sensitive to temperature and rainfall. Such processes typically lead 
to higher pollution levels during heatwaves, when exposure to PM2.5 appears to be especially harmful.29,30,31,32 

Local air pollution events are also strongly tied to large-scale weather patterns.33,34,35,36 For example, cold 
fronts sweep clean air across the eastern US, clearing the air of pollution.37 How climate change will affect 
these large-scale patterns is not well known. In the eastern US, the largest and most persistent pollution 
events often co-occur with extreme heat.38 Air stagnation events, when weak winds provide little ventilation 
near the ground, promote pollution accumulation. Co-occurrences of heat and air stagnation are projected 
to increase with climate change.39 Air pollution is also expected to worsen as the warm season lengthens, 
with greater pollution during the spring and autumn.40,41 Other meteorological changes accompanying 
climate change may improve air quality. For example, increasing humidity may reduce ozone through 
chemical reactions, while increasing precipitation may remove PM2.5 from the atmosphere (Figure 14.1).

Methane, a key GHG that contributes to near-term warming (KM 14.5), is a source of global background 
ozone when it undergoes chemical oxidation in the presence of nitrogen oxides.42,43 Continued growth in 
methane emissions from wetlands and human activities would raise background ozone levels, including in 
winter (KM 3.1),44,45 increasing the potential for a longer ozone season that begins earlier in the spring.46 As 
with ozone episodes, long-term exposure to background ozone also increases mortality.2,47

The response of ozone and PM2.5 to climate change—and their associated impacts on health—will vary 
regionally, reflecting the net balance of several complex chemical, meteorological, and small-scale 
processes, which vary spatially and over time (Figure 14.1).48,49,50 Across the Midwest and Northeast, 
year-round ozone is expected to increase by 2035 under a very high scenario (RCP8.5).51 In California and 
the Northeast, increasing temperatures under a moderate scenario (RCP4.5) would double the number of 
severe ozone episodes by the 2050s relative to the early 2000s,52 with further increases in summer average 
ozone in these regions by 2100.53 Projecting future PM2.5 is complicated, as different types of PM2.5 are 
expected to respond differently to changing climate.51,54 Wildfires are expected to increase smoke PM2.5 in 
the West and Alaska (KM 14.2). The rugged western topography makes it particularly susceptible to PM2.5 
increases, especially in winter when mountain valleys trap polluted air.55 Declines in lake area in some areas 
of the mountainous West, driven mainly by human water use but also by changing climate, have exposed 
lakebeds and increased dust emissions.56,57,58 These declines in lake area are projected to continue as tem-
peratures rise and snowpack diminishes (KM 4.1), with further increases in dust.59,60,61 In the arid Southwest, 
dust concentrations are expected to double by 2100, compared to 2010, due to warmer and drier conditions 
(KMs 6.1, 28.3, 28.4).62,63 Multiple studies agree that climate change is expected to increase PM2.5 concentra-
tions in the Northeast.40,49,64
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Climate Change Impacts on Ozone and Fine Particulate Matter (PM2.5) over the United States

Climate change will have varying effects on ozone and fine particulate matter (PM2.5) concentrations, including 
through impacts on weather-sensitive emissions.

Figure 14.1. Climate change is projected to alter concentrations of two key US air pollutants, ozone and PM2.5, 
through several processes. Red icons signify increased ozone and PM2.5, and the blue icon denotes decreased 
PM2.5. Plus and minus signs indicate the expected pollutant response to climate-driven changes in meteorology. 
Question marks and purple icons denote uncertainty in either the response or in how the meteorological process 
will change with climate change. Given uncertainties and regional differences in pollution responses, the magni-
tude of these responses is not presented. Key Messages 14.1 and 14.2 provide more detailed descriptions of the 
mechanisms involved. Adapted from The Royal Society 202165 [CC BY 4.0]. 

The adverse effect of climate change on the air we breathe is known as the climate penalty on air quality, in 
which climate change counteracts some of the benefits expected from emissions reductions.66 Figure 14.2 
illustrates how air quality can vary under different scenarios of air pollution sources and GHGs in future 
decades. In general, climate change is expected to worsen air quality, although the actions that policymak-
ers and communities take today could counteract this outcome. Steeper reductions in the human-caused 
emissions that contribute to ozone and PM2.5 are expected to lessen this climate penalty and limit adverse 
health effects.15,64,67,68

https://creativecommons.org/licenses/by/4.0/legalcode
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Simulated Historical and Projected Changes in Fine Particulate Matter (PM2.5) and Ozone

Reductions in human-caused emissions that contribute to ozone and fine particulate matter (PM2.5) are 
expected to improve air quality in a changing climate.

Figure 14.2. Future air quality depends on both air pollution control measures and climate change. Modeled 
pollutant concentrations are shown averaged over the contiguous US, with the historical period in black and 
projections in various colors, for (a) annual average PM2.5 and (b) summer (June–August) average daily maximum 
8-hour average ozone, a metric of ozone pollution. Trends are shown relative to the 2015–2024 average value. 
Historical air quality improvements reflect clean air policies. Thick lines are multimodel average values. Thin lines 
show individual model simulations, indicating uncertainties from modeled processes and natural weather variabil-
ity for each scenario. The focus on the contiguous states reflects the stronger influence from domestic emissions 
compared to other US regions (Alaska, Hawai‘i and the US-Affiliated Pacific Islands, and the US Caribbean), where 
the balance of processes contributing to pollution and responses to climate change are expected to differ. These 
projections do not include the expected strong influence of climate change on wildfire smoke. Model simulations 
are described by Turnock et al. 2020.15 Figure credit: Massachusetts Institute of Technology. See figure metadata 
for additional contributors. 
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Key Message 14.2  
Increasing Wildfire Smoke Is Harming Human Health and Catalyzing New Protection Strategies

Wildfires emit gases and fine particles that are harmful to human health, contributing to 
premature mortality, asthma, and other health problems (very high confidence). Climate change 
is contributing to increases in the frequency and severity of wildfires, thereby worsening air 
quality in many regions of the contiguous US and Alaska (likely, high confidence). Although 
large challenges remain, new communication and mitigation measures are reducing a portion 
of the dangers of wildfire smoke (medium confidence).

Large wildfires have become more frequent in the western US in recent decades. While wildfires occur 
naturally, climate change and other human influences have increased their likelihood (Focus on Western 
Wildfires; KM 28.5; Figure A4.14).69 Wildfires are projected to increase in many regions over the coming 
century (KM 27.2).70,71,72,73 Smoke pollutants emitted by wildfires negatively impact human health, visibility, 
and solar energy generation.74,75 Wildland fires are the largest contributors to PM2.5 concentrations in some 
parts of the western US74,76,77 and impact air quality across the US (Figure 14.3). These concentrations could 
increase, particularly in the western US, by the end of the century,78 offsetting improvements from reduced 
human-caused air pollutant emissions.71,79

Wildfires emit PM2.5 and other air pollutants, including volatile organic compounds (VOCs), nitrogen oxides 
(which contribute to ozone generation in plumes), and toxic gaseous and particulate species.74,77 Since 
publication of the Fourth National Climate Assessment in 2018, studies have revealed factors influencing 
the smoke pollutant mixture, including the following: 1) smoke enhancements to ozone may be amplified 
when smoke mixes with urban pollution;80,81 2) chemical reactions in plumes change the composition of 
smoke PM2.5 but generally not its amount;82 and 3) hazardous VOC concentrations generally decrease 
with plume age due to chemical losses,77 but structures burning in wildfires could emit additional toxic 
material, increasing health risks in the wildland–urban interface.74,83,84 Finally, microbes emitted by fires 
and transported in smoke suggest that the region biologically affected by fires is more extensive than 
previously thought.85,86,87

Human exposure to smoke pollutants is associated with mortality, asthma, and other respiratory problems, 
as well as worse outcomes for birth, COVID-19 infection rates (Focus on COVID-19 and Climate Change), 
and emotional well-being.88,89,90,91,92,93,94,95 Smoke exposure in the US presently contributes to 1,000–9,000 
hospital and emergency department visits and 6,000–30,000 deaths annually.96,97 Smoke can disproportion-
ately impact certain racial, ethnic, occupational, and age-related subpopulations in both urban and rural 
areas (KM 22.2),76,98,99,100 but the most impacted subpopulations are not consistent across studies. As future 
wildfire activity increases in some US regions, mortality rates and respiratory hospitalizations attributable 
to wildfires are also expected to increase (KM 27.5).71,101

Fire is a natural part of many ecosystems. Land managers use prescribed fire to promote ecosystem 
health and to reduce the vulnerability to severe fires (KMs 7.3, 28.5),102 especially in a changing climate.103,104 
Indigenous communities have long used fire to steward their environments (KM 16.3).105,106 Prescribed 
fire emissions vary greatly by region and season107 but are typically much lower per acre than those from 
wildfires.74 Prescribed fire activity could increase in some regions as land managers attempt to reduce 
the frequency, intensity, and spread of wildfires in a changing climate (KM 7.3).103,104 Although air quality 
and health impacts are associated with prescribed fire smoke (KM 22.2),108 well-designed prescribed fires 
targeted for specific locations have the potential to reduce overall smoke exposure109 and health impacts of 
subsequent wildfires.110,111
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Advances in remote sensing and improved smoke prediction systems,112,113,114,115,116 combined with better 
communications strategies,117 are helping protect the public from unhealthy smoke conditions (Figure 14.3). 
Smoke exposure reduction techniques, including masks and portable air filters, can help people limit the 
amount of PM2.5 that is inhaled during a smoke event,117,118,119,120,121 as well as pollen and other particulate air 
pollution. Smoke forecasters synthesize modeled, satellite, and monitoring data to create daily forecasts122 
that reach the general public, including underserved communities—for example, through Spanish trans-
lations. Communication of these forecasts and techniques to reduce smoke exposure occurs through 
interagency federal,117,123 state, and Tribal programs, as well as social media. However, people tend to take 
protective actions, such as staying indoors and using air filters, in response to symptoms from exposure 
rather than take preventive measures.124 More work would be needed to quantify and communicate the 
benefits of exposure-reduction actions.125,126

Impacts of Wildfire Smoke on Air Quality

Wildfire smoke affects air quality across the country.

Figure 14.3. Wildfire smoke can affect the daily lives of people across the country, as communicated in real time 
to the public on September 13, 2020, on the AirNow Fire and Smoke Map (https://fire.airnow.gov/). Monitors 
measuring particulate matter are color-coded by air quality index from green for good air quality to brown for haz-
ardous. Here, unhealthy to hazardous air quality conditions are shown at multiple monitors (circle, triangle, and 
square icons) across the western US, and satellite imagery (gray) shows smoke extending across much of North 
America. On this day, the US Caribbean was free of smoke, and monitor or sensor data were not yet available, so 
the region is not shown. Data are not available for US-affiliated Pacific Islands. Adapted from EPA 2022.127 Base 
map: Copyright © 2022 Esri and its licensors. All rights reserved.
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Key Message 14.3  
Air Pollution Is Often Worse in Communities of Color and Low-Income Communities 

Communities of color, people with low socioeconomic status, and other marginalized popula-
tions are disproportionately harmed by poor air quality (very high confidence). In the coming 
decades, these same communities will, on average, face worsened cumulative air pollution 
burdens from climate change–driven hazards (very likely, high confidence). Decision-making 
focused on the fair distribution of air quality improvements, rather than on overall emissions 
reductions alone, is critical for reducing air pollution inequities (high confidence).

Air pollution disproportionately affects people of color and people with low socioeconomic status in 
both cities and rural places.128,129,130,131 While air quality has improved over recent decades, air pollution 
disparities have persisted.132,133,134,135,136,137 There is a clear pattern of more air pollution sources being located in 
communities of color and low-income neighborhoods. Diesel traffic exhaust is among the largest sources of 
air pollution inequalities in urban areas,138 while other emitters, including industrial facilities,25,139 prescribed 
agricultural burns,140 concentrated animal feeding operations,141,142,143,144,145 power generation,146 and oil and 
gas infrastructure,147,148 contribute to air pollution disparities in cities and rural environments. Racism 
in historical practices and policies has contributed to ongoing inequities, protecting White areas from 
pollution and disinvesting in and off-loading those costs onto communities of color, for example, through 
redlining and housing segregation.149,150,151

The health impacts of the unequal distribution of air pollution are magnified by factors including reduced 
access to nutrition, social and institutional support, and healthcare, as well as psychosocial stress from 
racism and poverty.152 As a result, a given level of air pollution can cause more harm to people of color and 
those with lower socioeconomic status.30,152,153,154 Environmental inequalities often overlap, such as exposure 
to both poor air quality and higher-than-average urban heat (KM 21.3).155,156 Exposure to air pollution and 
high air temperatures in combination can worsen health outcomes.29,30,157,158 Environmental inequalities also 
often compound in ways that exacerbate negative impacts; for example, reduced tree cover, common in 
urban communities of color,159 intensifies urban heat (KM 12.2) and affects air quality (KM 14.1). Disparities in 
air-conditioning access160,161 and other housing differences may increase infiltration of outdoor air pollution 
and wildfire smoke into homes and schools in communities of color and lower-income neighborhoods,162 
and low-income households may have less ability to adopt in-home air filtration.

A 3.6°F (2°C) increase in average global temperatures relative to the 1986–2005 average is projected to 
worsen PM2.5-related premature mortality for African Americans over age 65 by 40%–60% more than for 
people of other racial and ethnic groups.155 This same temperature change is projected to cause substantially 
higher rates of PM2.5-related asthma for African American children and smaller, but still disproportionate, 
increased rates for Latino, Asian, Pacific Islander, and American Indian and Alaska Native children. In New 
York City and Newark, New Jersey, projected trends in air stagnation are expected to worsen inequalities 
in concentrations of nitrogen dioxide (NO2),163 an air pollutant associated with asthma.164,165 The impact of 
climate change on air quality–related inequalities may differ depending on the sources of pollution and 
whether pollutants are emitted directly or formed through chemistry (KM 14.1). However, climate change 
can increase cumulative and unequal air quality–related health burdens, such as from the combined effects 
of air pollution and temperature, even if air pollution itself does not worsen.29,30,157,158

Actions to address climate change through GHG regulation will also affect air quality, with the distribution 
of benefits dependent on the mitigation approach. Programs focusing on GHG sources with the lowest 
mitigation costs have had mixed impacts on air pollution equity.166,167 In California, GHG regulation through 
carbon cap-and-trade increased emissions of combustion-related air pollutants in communities of color 
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and low-income neighborhoods.168 Approaches focused on lowering aggregate emissions across a large 
geographic region, or from a single emissions category, have been shown to be less effective than inter-
ventions aimed at reducing air pollution inequalities for a specific location.169 Solutions can be designed to 
reduce disparities and overcome the challenges associated with GHG regulation.170,171 

Air Pollution Exposure at Home in the Houston Ship Channel Region

Industries expose people living near the Ship Channel—often African American, Latino, and low-income 
residents—to harmful air pollution.

Figure 14.4. Nighttime industrial flaring exposes residents to air pollution near the Houston Ship Channel in 
the Deepwater community in Pasadena, Texas, a primarily African American, Latino, and low-income neigh-
borhood. Photo credit: ©Cassandra Casados-Klein, Air Alliance Houston.

Box 14.1. Environmental Justice, Air Pollution, and Climate Change: Houston, Texas

Houston’s Ship Channel region is a patchwork of chemical refineries, freeways, homes, and playgrounds (Figure 14.4; Box 
26.1). Air pollution levels along this busy industrial waterway, connecting downtown Houston to Galveston Bay, are among 
the highest in the city (Figure 14.5). Flares and odors are commonplace,172,173,174 and community concerns about health 
impacts are often ignored. Many of Houston’s African American, Latino, and working-class families live in the neighbor-
hoods of the Ship Channel, where they are more likely to breathe harmful cancer-causing air pollution from diesel trucks 
and refineries.138,175,176,177,178,179,180 Communities living at the fenceline of the petrochemical industry face ongoing vulnerabil-
ities, such as dual exposure to air pollution and heat and endangerment from damages to petrochemical facilities caused 
by stronger hurricanes (KMs 9.2, 15.2). In 2017, Hurricane Harvey triggered widespread industrial releases of hazardous 
air pollutants throughout the Houston Ship Channel.181,182,183 Houston is also the stage for foundational scholarship on 
environmental justice by Dr. Robert Bullard (KM 20.3), where community organizations lead work to reduce air pollution 
and make communities more resilient to climate change.
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Air Pollution and Temperature Inequalities in Houston, Texas 

Air pollution, its health impacts, and temperatures are unequally distributed across Houston, Texas.

Figure 14.5. Air quality and temperatures vary across Houston, Texas (urbanized area outlined in black). (a) 
For each neighborhood, the largest racial or ethnic group is shown: African American (blue), Latino (green), 
and Asian (orange). Higher-than-average levels of (b) nitrogen dioxide (NO2; in 2019), (c) lifetime cancer risks 
associated with chronic air pollution exposure per million equally exposed people (2018), and (d) summer 
(June–August) air temperatures (2020) are found in neighborhoods that are primarily African American and 
Latino, especially those surrounding the Ship Channel (black box). There is variability in time and at very fine 
spatial scales that may not be captured here. Figure credit: University of Virginia, Columbia University, and 
Montana State University.
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Key Message 14.4  
Climate Change Is Worsening Pollen Exposures and Adversely Impacting Health

Increased allergen exposure damages the health of people who suffer from allergies, asthma, 
and chronic obstructive pulmonary disease (COPD) (very high confidence). Human-caused 
climate change has already caused some regions to experience longer pollen seasons and 
higher pollen concentrations (very likely, high confidence), and these trends are expected to 
continue as climate changes (very likely, high confidence). Increasing access to allergists, 
improved diagnosis and disease management, and allergy early warning systems may coun-
teract the health impacts of increasing pollen exposure (high confidence).

Allergic airway disease, including allergic rhinitis and asthma, is widespread in the US, is becoming 
more prevalent, and imposes a burden of several billion dollars in healthcare costs and lost produc-
tivity annually.184 Exposure to allergenic pollens and molds (aeroallergens) triggers allergic disease 
development.185,186,187 Co-exposure to aeroallergens and pollutants like ozone, nitrogen oxides, and PM2.5 can 
exacerbate allergic airway disease symptoms.188,189,190 Aeroallergen exposure can compromise the body’s 
antiviral defenses, possibly increasing susceptibility to respiratory viral infections in both allergic and 
nonallergic people.186,191 It is also probable that pollen exposure is associated with COPD mortality.192 Pollen 
can also transport viruses.193

Local climate affects emissions of allergenic tree and grass pollens and fungal spores. Climate change is 
altering pollen season characteristics for allergen-producing trees during spring and for grasses and weeds 
during summer and fall.194 Rising atmospheric carbon dioxide (CO2) can increase pollen allergenicity.195,196,197

Multiple US regions have experienced longer, more intense pollen seasons, with earlier start dates and 
increased emissions and airborne loads over the past 30 years, increasing the potential for exposures 
(Figure 14.6; KM 22.2).187,194,196,198,199,200,201 For example, the season for ragweed pollen, a significant allergen, has 
lengthened since the 1990s (Figure A4.13), and its range has expanded northward;202 ragweed grows faster, 
flowers earlier, and produces more pollen in high-CO2 areas.196,203 With climate change, ragweed pollen is 
projected to increase in most regions (Figure 14.6) and to co-occur with high ozone more frequently.204,205 
Likewise, the number of days with total pollen concentrations exceeding thresholds for triggering allergies 
is projected to increase in most US regions.204,206,207,208

Increasing frequency and intensity of heatwaves, storms, and floods associated with climate change can also 
intensify aeroallergen exposures. Mold proliferation is increased by floods. Thunderstorms can exacerbate 
respiratory allergy and asthma in patients with hay fever, and similar phenomena have been observed 
for molds.209
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Observed and Projected Pollen Changes Under Climate Change

Pollen has been increasing in many US regions and is projected to continue to increase as climate changes. 

Figure 14.6. (a) Observed long-term pollen increases are shown as the linear trend of total annual pollen at 60 
stations (1990–2018). (b) Modeled projected changes in average airborne ragweed pollen concentrations in 
2047, relative to 2004, are shown for climate change conditions under a very high scenario (RCP8.5). Yellow 
and red shades indicate increases in pollen concentrations, and circle size in panel (a) reflects the number of 
years of data at each station. Observations are not available for many US states and affiliated territories, and the 
modeled projection does not include non-contiguous US states and territories. There is a net increase in concen-
tration overall, with marked increases in certain areas and declines in others. (a) Adapted from Anderegg et al. 
2021194 [CC BY 4.0]; (b) adapted from Ren et al. 2022210 [CC BY 4.0].

Allergic airway disease is underdiagnosed, and many therapies are underutilized.211 Increasing access to 
allergists and diagnostic tests can help clarify what exposures drive allergies for individuals and aid in 
developing therapeutic plans including medical and immune therapies.212 Staying indoors and wearing masks 
to reduce exposure, as well as avoidance of allergens through early warning systems213 and other public 
health campaigns, can also reduce impacts.214 Understanding of climatic influences on pollen exposures can 
inform diagnosis and disease management, but it remains unclear whether these and other advances can 
blunt the health impact of increased aeroallergen exposures as the climate warms.

https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
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Key Message 14.5  
Policies Can Reduce Greenhouse Gas Emissions and Improve Air Quality Simultaneously 

Substantial reductions in economy-wide greenhouse gas emissions would result in improved 
air quality and significant public health benefits (very likely, high confidence). For many actions, 
these benefits exceed the cost of greenhouse gas emission controls (likely, high confidence). 
Through coordinated actions emphasizing reduced fossil fuel use, improved energy efficiency, 
and reductions in short-lived climate pollutants, the US has an opportunity to greatly improve 
air quality while substantially reducing its climate impact, approaching net-zero CO2 emissions 
(high confidence).

Fossil fuel energy use is responsible for 92.1% of US CO2 emissions215 and the majority of PM2.5-induced 
deaths.20,216 Consequently, actions to control GHGs, including reductions in energy demand or shifts toward 
cleaner energy sources, typically reduce air pollutant emissions from the same sources, benefiting air 
quality and health. 

By contrast, actions that have substantially improved US air quality since 1990 generally did not reduce 
GHG emissions, as they focused on technologies that remove air pollutant emissions from power plants, 
industrial facilities, and vehicles but do not reduce fossil fuel consumption—and some actions increased 
fossil fuel use and GHG emissions (Figure 14.7).215,217,218 In the past decade, fuel switching from coal toward 
renewables (wind and solar) and lower-emitting sources (fossil gas) has reduced emissions of both GHGs 
and air pollutants.219,220

To further improve air quality, more stringent smokestack and tailpipe controls on fossil fuel sources may 
be chosen. Alternatively, GHG mitigation scenarios that meet the long-term temperature goal of the Paris 
Agreement and approach net-zero emissions this century replace fossil fuels with cleaner energy sources 
and reduce overall energy use (Figure 14.7; KM 32.2).221,222,223 This clean energy transition would provide air 
quality224 and health benefits225 beyond what smokestack and tailpipe controls can provide.
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Potential for Emissions-Reduction Actions to Achieve Air Quality and Climate Benefits

Many emissions-reduction actions can achieve multiple benefits for climate, air quality, and health.

Figure 14.7. Environmental policies to mitigate emissions will affect both air quality and climate change, and 
actions can be coordinated to address both problems simultaneously. Blue boxes show mitigation actions aimed 
at conventional air pollution controls; orange boxes show actions targeted at short-lived climate pollutants; and 
white boxes show other types of actions. Emissions-reduction actions in the upper right have greater air quali-
ty and climate benefits. Box position indicates the relative potential of actions, from most detrimental to most 
beneficial, and should not be interpreted quantitatively (e.g., that one action has twice the potential of another). 
The size of the boxes indicates some uncertainty, with actions in boxes straddling an axis being uncertain in the 
direction of the effect. Addressing climate change requires moving to the actions on the right-hand side of the 
figure, where many options simultaneously improve air quality. Figure credit: EPA, University of North Carolina at 
Chapel Hill, and Duke University.

Economy-wide GHG reductions are expected to decrease emissions of air pollutants emitted from the same 
sources, resulting in benefits for air quality and health (KMs 13.3, 32.4).226,227,228,229,230 Each metric ton of CO2 
reduced is estimated to bring about health benefits231 that are valued in 26 US studies from $8 to $430 (in 
2022 dollars), with a median of $100 per ton of CO2 (see Traceable Accounts for details on relevant studies), 
mainly from avoided premature death. These health benefits can significantly offset or exceed implemen-
tation costs for many GHG mitigation measures (Figure 14.8). Since health benefits exceed costs in most 
studies, these GHG reductions are economically beneficial, even without accounting for other benefits of 
slowing climate change. Estimates of these benefits vary across many studies because of differences in 
mitigation actions considered, methods of assessing emissions, pollutant concentrations and health impacts, 
and mortality valuation.232 Most studies have typically evaluated mortality while neglecting morbidity 
impacts, such as preterm births, restricted activity days, and hospitalizations,233 and therefore may under-
estimate the full health benefits of GHG reductions. However, some individual actions, including biomass 
energy and carbon capture and storage, may provide small air quality benefits or even worsen air quality 
(Figure 14.7; KM 5.3).234 Lastly, GHG mitigation policies may alleviate or worsen inequities in air pollution 
exposure, depending on their design (KMs 14.3, 32.4). 
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Air Quality and Health Benefits Estimates in the US, Relative to Costs

Air quality health benefits alone exceed or significantly offset the costs of greenhouse gas reductions.

Figure 14.8. Controls on greenhouse gas (GHG) emissions also reduce air pollutant emissions from the same 
sources (often fossil fuel combustion), improving air quality and saving lives. Each circle denotes the results from 
a study in the US during 2013–2022. These studies find that the value of health benefits significantly offset or in 
most cases exceed the GHG emissions control costs, apart from other benefits of slowing climate change. Figure 
credit: EPA, University of North Carolina at Chapel Hill, and Duke University. 

The air quality benefits of GHG controls by reducing co-emitted air pollutants occur mainly locally and 
regionally and nearly immediately following emissions reductions.19,235 By contrast, benefits of slowing 
climate change, including lessening the impacts of climate change on air quality (KM 14.1), are long term and 
distributed globally. Recognizing these air quality health benefits strengthens incentives for local, state, and 
national actions to reduce GHG emissions.236

Indoor air quality can also be affected by GHG reduction actions, as some methods for improving building 
energy efficiency decrease ventilation, which can increase mold and degrade indoor air quality.237 Newer 
approaches to building design improve energy efficiency while meeting temperature control and indoor air 
quality needs.238 More widespread application of these approaches can reduce energy use, mitigate GHG 
emissions, and improve indoor air quality (KM 12.3).

Climate mitigation actions focused on short-lived climate pollutants (SLCPs) can also improve local air 
quality. Reducing SLCPs, including methane, black carbon, and ozone, directly improves air quality and 
reduces the near-term rate of warming, affecting climate more quickly than reductions in long-lived GHGs 
like CO2.239,240 Methane directly contributes to warming and increases ozone air pollution globally.42,241 The 
social cost of methane is estimated at around $2,200 (in 2022 dollars) per metric ton242 when accounting 
for impacts via climate change. Other estimates that also include health impacts of ozone are higher (about 
$4,600 to $9,200 per metric ton in 2022 dollars), with over half of that from ozone health impacts.243,244,245 
VOCs and carbon monoxide (CO) form ozone in the atmosphere, and reducing their emissions benefits 
both climate and air quality. Nitrogen oxides also contribute to ozone but have a net cooling influence by 
shortening methane’s lifetime and forming PM2.5.240,246 Together, global emissions of methane, VOCs, CO, and 
black carbon have contributed about 1.5°F to global average warming in 2019, compared to about 1.4°F from 
CO2 increases (KM 3.1).247

Most forms of PM2.5 cool the climate, and removing them exacerbates climate warming (KMs 2.1, 3.1), as seen 
from historical sulfur dioxide reductions to improve air quality.248,249,250,251 If PM2.5 reductions are undertaken 
together with CO2 and SLCP reductions, this short-term warming may be outweighed, leading to a net 
cooling.252,253 Carbon particles, mostly from fires and burning fossil fuels, cause a mix of warming and cooling 
effects.240 Of these, black carbon is the component that contributes most to warming, and actions targeting 
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sources that emit relatively more black carbon, like diesel engines, are expected to best reduce warming 
while improving air quality. Ammonia, which contributes to PM2.5 and is growing in relative importance 
as a PM2.5 source, comes mostly from agriculture.254 Agricultural ammonia and methane emissions can be 
reduced by more efficient use of fertilizer255,256 and adopting healthier plant-based diets.244,257 Finally, air 
pollutants can influence regional climate such as through changes in clouds and precipitation, and black 
carbon can increase snowmelt, which affects water resources (KM 4.1).258
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Traceable Accounts
Process Description
Authors were selected to provide diversity in topical focus areas and to align expertise with the anticipated 
topics for the chapter, as well as for geographic and racial diversity. All authors are recognized experts in 
climate change and air quality, including in the focus areas of the chapter.

The author team met online roughly every two weeks to discuss the organization of topics, main points to 
emphasize, and the many logistical questions related to writing the chapter. The author team agreed on five 
key topics as the focus of the chapter, reflected in the Zero Order Draft (ZOD). The ZOD was made publicly 
available, and a public engagement workshop was held on January 18, 2022, where the author team gathered 
public comments on the ZOD. All written public comments on the ZOD were reviewed by the author team, 
and responses were provided for each. Similarly, the author team responded to comments received on 
multiple drafts that followed.

Key Messages were developed by small author teams, who were responsible for developing the content 
of each topic area, and discussed among all authors. The team achieved consensus on the wording of the 
Key Messages for the Third Order Draft through group meetings to discuss this text specifically. Following 
comments on drafts of the Fourth Order Draft, the team made small revisions to the Key Messages, and 
these were discussed among authors to again achieve consensus.

Key Message 14.1  
Climate Change Will Hamper Efforts to Improve US Air Quality

Description of Evidence Base 
An extensive literature base documents air quality modeling of the response of ozone and fine particulate 
matter (PM2.5) to future climate change. Comparison across studies, however, is challenging due to the use 
of different scenarios, time periods, metrics, and process representations in the modeling systems. The 
chemistry of both ozone and PM2.5 is complex, which adds to the difficulty of predicting the influence of 
climate change on air quality. Source gases of ozone and PM2.5 include methane, carbon monoxide, nitrogen 
oxides, non-methane volatile organic compounds, sulfur dioxide, ammonia, and dimethyl sulfide; types of 
PM2.5 directly emitted into the atmosphere include black carbon, organic carbon, mineral dust, sea salt, 
pollen, and spores.

The literature using observations to infer process-level relationships between air pollutants and climate is 
growing and includes links with temperature, precipitation, winds, and near-surface mixing.39,259,260 However, 
observational records are relatively short (a few decades at best), and isolating responses to meteorology 
requires disentangling air pollution responses to large emissions perturbations over the observing period to 
reveal the influence of climate change and variability. Air pollution trends in recent decades in some urban 
areas and at the regional scale are well established based on high-quality monitoring.13,261 A large literature 
base employs a wide range of methods to attribute observed trends and variability to anthropogenic 
emissions versus meteorological variability. Highly resolved spatial distributions needed to assess com-
munity-level exposure are sparse but growing, and new observations from satellites and low-cost sensors 
will prove useful in this regard. For example, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) 
satellite instrument, launched in April 2023, promises to provide hourly, fine-spatial information about 
US pollution.262,263
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Many processes involving interactions between climate and air quality have been the foci of major lab, field, 
and modeling efforts (e.g., wildfires) or represent fundamental physics (e.g., the increase in water vapor 
as temperatures rise), and new work since the Fourth National Climate Assessment (NCA4) was published 
in 2018 further strengthens this deep evidence base. Such processes and their impacts on air pollution 
in a changing climate are illustrated in Figure 14.1. Wildfires are a key example of how feedbacks from the 
biosphere are expected to increase air pollution in future years (KM 14.2).264 An increased frequency of 
heatwaves will also lead to more extreme levels of ozone and PM2.5 (KM 2.2),38,265,266 while warmer average 
temperatures will increase seasonal mean daily maximum 8-hour average (MDA8) ozone and PM2.5 con-
centrations.49,51,260 The source gases of ozone and PM2.5 from plants and soils are expected to increase with 
warmer and drier conditions,259,267,268,269 thus degrading air quality. In addition, as plants wither and die 
during drought, ozone that would otherwise be deposited on leaves may accumulate in the atmosphere,270,271 
although this process is less well studied. Other processes may lead to lower pollution in a warmer climate. 
Some studies project that annual average precipitation, which removes PM2.5, will increase across much of 
the United States by 2100,272 but not all studies agree.273 Basic physics explains why atmospheric humidity 
will rise with temperature, and the chemical reactions governing ozone destruction will increase with 
humidity, reducing ozone in unpolluted regions.68,274 In contrast, greater humidity is expected to worsen 
PM2.5 air quality in some regions.275 Finally, future trends in the regional transport of pollution or in the 
frequency of weather patterns like stagnation will have consequences for US air pollution, but these trends 
are not well established across the US.276,277,278 

Efforts to model the net response of US air quality to climate change have taken two main approaches, 
with some studies focusing on the impact from climate change alone27,41,49,50,51,52,68,279 and other studies 
including the influences of both climate change and changing emissions from human sources of ozone and 
PM2.5, such as fossil fuel combustion.26,39,45,67 Some studies compare the combined effects of emissions and 
climate change with climate change alone.44,46 There is general agreement across these studies that climate 
change will degrade US air quality in many regions with high concentrations of pollutants. Summertime 
average surface ozone is expected to increase across much of the northern and eastern United States26,51 
and during heatwaves in populous areas already affected by pollution.53 Surface PM2.5 is also projected to 
increase in areas prone to wildfires (KM 14.2) or dust events,63 but there is less agreement on the response of 
PM2.5 elsewhere.50,51,54,280

Many epidemiological health studies have identified a wide range of adverse health outcomes following 
exposure to wildfire smoke and dust, as well as to ozone and particulate matter. Such adverse outcomes are 
expected to generally increase in response to ongoing climate change.26

Major Uncertainties and Research Gaps 
Uncertainties remain in how meteorology will respond to climate change in different regions of the United 
States and how these meteorological responses, in turn, will trigger changes in different air pollutants. 
While it is well established that rising methane will increase background ozone at the surface, there is 
uncertainty in the spatial patterns of this response tied to nitrogen oxides emissions, including from ship 
plumes.42,281 Climate variability tends to dominate the uncertainty in shorter-range projections (thin lines in 
Figure 14.2).282,283,284 Health responses to the combined impacts of exposure to multiple pollutants and other 
climate change impacts (heat, flooding) are not well quantified. Extensive research into the relative toxicity 
of PM2.5 mixtures has not consistently shown that any particular source or component is more strongly 
related to health effects than total PM2.5 mass.285

The lack of systematic information available from chemistry–climate models for US air quality complicates 
the assessment of future change. For example, Figure 14.2 makes use of the most comprehensive set 
of coordinated simulations with international climate models that include the atmospheric chemistry 
necessary for projections of future air quality. There are different numbers of models with simulations 
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available for each scenario. Specifically, seven models simulated PM2.5 for both the historical simulations 
and four future air pollutant emissions and climate scenarios during 2015–2100 (see Table 3 in the Guide 
to the Report). In contrast, for ground-level ozone, fewer models (one to five depending on scenario) 
archived the hourly ground-level ozone needed to calculate the MDA8 metric used to assess compliance 
with the National Ambient Air Quality Standards. In Figure 14.2, thick lines show the average of all available 
model simulations for each scenario, with each simulation shown individually by the thin lines. A list of 
the individual models that produced each scenario in Figure 14.2, together with the simulated fields, are 
available in the metadata. Models and simulations are further described by Turnock et al. (2020).15

In more recent studies, progress is being made in quantifying different sources of uncertainty in emissions 
scenarios and future projections for US air quality, including separately determining the uncertainty 
associated with model mechanisms and with naturally arising climate variability.259,286,287

Description of Confidence and Likelihood
The overall assessment of medium confidence that climate change is projected to worsen US air quality 
in many US regions reflects uncertainty in the net ozone and PM2.5 responses to climate change across 
different regions.48,49,50,51,54,68,280 The evidence for air pollution impacts on health is well established from 
epidemiological and toxicological studies,4,7,9,10 supporting a very likely, high confidence assessment. There 
is very high confidence and it is very likely that climate change will increase the intensity and frequency 
of extreme heat (KM 2.2).247 Observational evidence, theoretical understanding, and modeling studies all 
support an assessment of high confidence that increasing frequency of warmer and drier conditions will very 
likely raise the risk of exposure to airborne dust and wildfire smoke in some regions.62,63,69,288

Key Message 14.2  
Increasing Wildfire Smoke Is Harming Human Health and Catalyzing New Protection Strategies

Description of Evidence Base 
This section was based on a review of the recent peer-reviewed literature. Many studies detail the harmful 
health effects of wildfire smoke on human health. A growing weight of evidence indicates that wildfires and 
associated air quality impacts will increase in the future with a warming climate, but the interactions are 
complex and regionally driven. Our understanding of smoke exposure and health impacts has been aided 
by combinations of surface and satellite-based observations, as well as model simulations.289,290 Smoke 
prediction (forecast) systems are a useful mitigation tool,121 and the number of them online, along with many 
science improvements, has grown in recent years across North America.112,114,115,291,292,293,294

Since NCA4, particularly impactful wildfire smoke years have driven the development of new communication 
and smoke mitigation measures. The authors highlight the growing base of information on how the public 
can protect itself before and during a wildfire, such as that found in the EPA Smoke-Ready Toolbox (https://
www.epa.gov/smoke-ready-toolbox-wildfires), as well as the development of wildfire smoke mitigation 
programs by many states and Tribes, in addition to federal programs.295,296,297,298 Evidence shows that social 
media plays an important role in communicating mitigation measures. For example, smoke blogs in many 
western states are a nexus of information.299,300,301,302

Major Uncertainties and Research Gaps 
Uncertainties in future smoke exposure are intrinsically tied to the uncertainties in future wildfires. Hence, 
improvements in future wildfire projections will reduce uncertainties in future smoke exposure. Related 
to this is the uncertainty regarding how future use of prescribed fire as a management tool for wildfire 
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mitigation and ecosystem health will affect smoke at regional and national extents. Finally, quantification 
of how Indigenous fire practices influence smoke both historically and into the future will also reduce 
this uncertainty.

Uncertainties remain in our understanding of the health effects of smoke-specific particulate matter and 
the impacts of cumulative smoke exposure over many years. Research investigating indoor concentra-
tions during wildfire smoke events is preliminary, and there is a specific need to understand how indoor 
concentrations vary between socioeconomic groups during wildfire smoke events. Research quantifying 
the effectiveness of smoke mitigation measures and other health protection interventions is limited, and 
relying on personal interventions such as wearing face masks, filtering indoor air, and staying indoors can 
have limitations.303,304

Description of Confidence and Likelihood 
There is very high confidence that wildfires emit gases and fine particulate matter that are harmful to 
human health based on epidemiological and toxicological studies.74,77,88,89,90,91,92,93,94,95 Many studies document 
the effects of short-term acute exposures on respiratory healthcare outcomes (Liu et al. 2015; Reid et al. 
201692,93 and references therein). Less quantified but also of concern are the effects of long-term lower-level 
exposure.92,93 A growing weight of evidence supports the likely, high confidence assessment that with a 
warming climate, wildfires and associated air quality impacts will increase in the future in many regions of 
the contiguous US and Alaska, but the fire-climate interactions are complex and regionally driven, and the 
extent to which human management actions will influence future wildfire activity is unknown (Ch. 7). Since 
NCA4, particularly impactful wildfire smoke years have driven the development of new communication 
and smoke mitigation measures.117,118,119,120,121 Advancements in the science in models and observational data 
are also leading to products to help inform the public.112,113,114,115,116,154 However, these developments may not 
be enough to substantially reduce exposure, especially for all demographic groups.125,126 This uncertainty in 
exposure reduction leads to the assessment of medium confidence in the efficacy of these measures and the 
conclusion that challenges remain.

Key Message 14.3  
Air Pollution Is Often Worse in Communities of Color and Low-Income Communities

Description of Evidence Base 
This section is based on a review of peer-reviewed scientific literature, focusing on work published in the 
last decade. It has been repeatedly shown that communities of color, low-income communities, and other 
marginalized groups are disproportionately exposed to and harmed by air pollution.25,30,132,133,134,135,136,137,138,139,14

0,141,142,143,144,145,146,147,148,152,153,154,155 Over the last 10 years, there has been an emphasis on developing and applying 
new measurements and models to describe air pollution inequalities and, in some cases, on deepening 
commitments to community-engaged scholarship. Improved monitoring and modeling have advanced tools 
for distinguishing pollutant differences within and between neighborhoods, whereas research over previous 
decades was largely based on analyses of source proximity and/or health impacts. A new generation of 
sensors, costing a few hundred dollars each, is supporting collaborative air quality and exposure research 
and producing actionable results.305,306,307,308,309,310,311 In addition, recent advances in satellite remote sensing 
are enabling more detailed observations of neighborhood-level pollution inequalities, with satellite mea-
surements being used directly in the case of nitrogen dioxide (NO2)138,163,177,312 and in combination with 
models for PM2.5 and NO2,133,134,135,313,314 with additional information, especially on daytime temporal variability, 
anticipated with the launch of TEMPO. Machine learning and regression models are filling observational 
gaps and improving estimates of unequal exposures.129,134,313,315 Current understanding of air pollution health 
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impact disparities is also improving through neighborhood-level datasets on disease rates.133,314 Chemical 
transport models, which are standard research and air quality decision-making tools that account for key 
chemical and physical processes, have only begun to be used for neighborhood-level environmental justice 
applications because of model resolution challenges.316,317 That said, neighborhoods are typically larger 
than the spatial gradients of primary pollutants, and emissions sources are often clustered in overbur-
dened communities. As a result, models with very-fine-scale spatial resolution (hundreds of meters) may 
not always be needed to describe neighborhood-level inequalities,163,318 further opening the range of tools 
applicable to describing and understanding air pollution inequalities. As air pollution datasets evolve, they 
reinforce what communities with environmental justice concerns have been saying for decades. 

Major Uncertainties and Research Gaps 
While patterns of inequities related to air pollution sources, exposure, and associated adverse health 
impacts are well established, we lack tools that fully describe neighborhood-level distributions of a wide 
variety of pollutants harmful to health, such as air toxins, and of pollutant mixtures. Air pollution exposures 
also occur in the home, in classrooms, and at work, and there is little research simultaneously considering 
outdoor, indoor, and occupational exposures. To date, researchers have largely focused on producing high 
spatial resolution air pollution maps, and as a result, there is far less knowledge of the temporal variability 
and source patterns driving air pollution inequalities. Without also capturing this temporal variability, it is 
difficult to incorporate issues of inequalities in broader air quality and climate change decision-making.163 
Equity-related questions are not a common feature of air pollution–climate research, partly because of 
computational limitations on model spatial resolution and partly because of disciplinary and regulatory 
divides in the fields of air quality and environmental justice. There is limited research on how greenhouse 
gas (GHG) mitigation actions have differential impacts on air quality affecting different communities, but 
there is clear evidence that without considering equity, GHG regulations can adversely affect air quality in 
communities of color and communities with low-socioeconomic status.168

Description of Confidence and Likelihood 
There is very high confidence that communities of color, low-income communities, and other marginal-
ized populations, on average, live in greater proximity to emissions sources, experience higher levels of 
air pollution, and are disproportionately harmed by poor air quality25,129,138,152,153,319—this has been repeatedly 
shown for decades. The author team assigns very likely, high confidence to the statement that these 
same communities will disproportionately face worsened cumulative air pollution burdens from climate 
change–driven hazards. Regarding the likelihood, there are two facets to consider concerning how climate 
change will affect air pollution inequity: 1) how the amount and distribution of air pollution will differ in the 
future and 2) how the health impacts of air pollution exposures will vary with climate change. There is less 
research on how the amount and distribution of air quality (i.e., air pollution inequalities) will change in the 
future,155,163 with varying effects possible depending on which control strategies are employed and whether 
pollutants are directly emitted into the atmosphere or formed in the atmosphere through chemistry. The 
likelihood and confidence statements are largely based on the second facet—because of well-document-
ed inequalities in the distribution of other climate-sensitive environmental benefits and harms (KMs 9.2, 
12.2, 15.2) and because of other forms of structural racism affecting the impacts of air pollution on health 
and well-being,152,156 hence the high confidence. The cumulative burdens of air pollution with other climate 
change-driven hazards are very likely to increase in the coming decades in the absence of equity-focused 
emission controls. The author team assigns high confidence to the statement that equity-focused deci-
sion-making is critical for reducing air pollution inequities, as it has been borne out over decades of 
improved air quality across the US that air pollution disparities persist.132,133,134,135,136,137 Sector, market, and 
pollutant threshold-based controls have been shown to have smaller equity benefits than location-specific 
interventions,169 with California’s GHG market serving as a real-world demonstration that GHG controls have 
the potential to worsen air pollution inequalities.168
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Key Message 14.4  
Climate Change Is Worsening Pollen Exposures and Adversely Impacting Health

Description of Evidence Base 
This section was based on a review of the recent peer-reviewed literature. A large number of articles using 
new data and tools have been published in the past few years, and some have provided insight into the 
attribution of observed shifts in pollen metrics to anthropogenic climate change. 

Recent developments have enhanced our understanding of climatic influences on pollen. These include 
improved understanding of plant phenology,203,320,321,322,323 improved measurements of aeroallergen concen-
trations,194,201,324 new modeling platforms for pollen emissions and transport,204,205,207,325,326 novel analytics tools 
for recognizing pollen patterns,327,328 automatic analysis of pollen types,329,330 and remotely sensed data on 
meteorology, air quality, and phenology.321,331,332 In addition to these methodological advances that allow for 
greater insight into factors influencing aeroallergen distribution and concentration, climatic influences are 
becoming clearer as the climate shifts further, and longer time series allow for greater confidence in the 
correlations observed. 

Strategies for reducing the impact of allergic airway disease by avoiding and reducing pollen exposure,213 
which can be facilitated through public health campaigns214 and taking medications to reduce immune 
response intensity,212 have been established for years. More recent literature has highlighted gaps in 
diagnosing and treating allergic airway disease.211

Major Uncertainties and Research Gaps 
There are several papers suggesting overall trends in pollen season and concentrations for total pollen 
and ragweed, but there is limited evidence for specific taxa, and there is less literature on climate change 
impacts on indoor and outdoor mold exposure. There is also limited evidence linking changes in health 
impacts with changes in exposure; however, there is abundant evidence that allergic respiratory disease 
is driven by exposure, so there is a strong presumption of a link. There is relatively limited information on 
the health equity impacts of changes in pollen exposure and on the effectiveness of early warning systems 
in reducing symptom burden. Lastly, there is little information quantifying the likelihood that investments 
in adaptation can fully close the adaptation gap and negate climate change–attributable shifts in allergic 
airway disease.

Description of Confidence and Likelihood
There is very high confidence in the linkage between aeroallergen exposure and the development and 
intermittent exacerbation of allergic airway disease and, by extension, that increased aeroallergen 
exposure damages the health of people who suffer from allergic airway disease.185,186,187,188,189,190,192 There is 
high confidence and it is very likely that human-caused climate change, particularly warming, has already 
changed the patterns of pollen seasons based on both observational studies in North America as well as 
modeling studies assessing the influence of anthropogenic climate change compared against a counterfac-
tual without anthropogenic climate forcing (Figure 14.6).187,194,196,198,199,200,201 This evidence demonstrates that 
shifts in pollen concentrations vary by region. There is high confidence and it is very likely that as the climate 
changes further, these trends will continue and that further shifts in aeroallergen concentrations and distri-
bution will depend on the rate at which the climate changes and, in particular, the rate of warming in a given 
location (Figure 14.6).204,206,207,208,210 Based on past experience with managing allergic airway disease, there is 
high confidence that the health impacts associated with increased pollen from climate change can be coun-
teracted fully or in part through improvements including increasing access to allergists, improved diagnosis 
and disease management, and allergy early warning systems.211,212,213,214
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Key Message 14.5  
Policies Can Reduce Greenhouse Gas Emissions and Improve Air Quality Simultaneously 

Description of Evidence Base
The author team made use of the existing literature, emphasizing studies published since NCA4 but also 
referencing some classic papers published before 2018. The author team emphasizes here how decisions 
to control GHG emissions often have effects on air pollutant emissions. Similarly, decisions to control air 
pollutant emissions may influence GHG emissions. The author team therefore highlights the opportunity to 
control both types of emissions simultaneously through reductions in fossil fuels use, addressing both air 
pollution and climate change. Conclusions are informed by historical changes in emissions in the US and 
elsewhere, particularly the actions to implement air quality regulations through controls on smokestack 
emissions from power plants and large industries and controls on tailpipe emissions from motor vehicles. 
A fuller array of possible actions is presented in Figure 14.7, which emphasizes the capacity for actions to 
affect emissions of both air pollutants and GHGs in the near-term (targeting 2030), without explicit con-
sideration for the cost-effectiveness of actions. Figure 14.7 does not present the potential for emissions 
reductions quantitatively, as the author team is not aware that this has been analyzed previously for the 
US. Rather the author team used information from several key sources to inform where boxes are placed 
in Figure 14.7, including US emissions inventories for GHGs215 and air pollutants,333 which constrain the 
potential reductions of some actions. Estimates of the global GHG mitigation capacity from the Sixth 
Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC) Working Group III221 help 
quantify the capacity for reduction, although these estimates are not specifically for the US, and estimates 
specifically for US energy system actions are from Figure 32.22. Estimates of sector contributions to US air 
pollution–related deaths216 are also used, as are qualitative estimates of the effects of GHG reductions on 
air pollution in the United Kingdom.65 Using these sources of information, emissions-reduction actions are 
put in order separately along the two axes in Figure 14.7 and then plotted. In some cases, minor changes 
in the order are made to fit the boxes on the figure. The boxes themselves are intended to communicate 
that there is some uncertainty in the emissions reductions, including boxes that straddle an axis, indicating 
uncertainty in the sign of the influence. Box positions should not be interpreted quantitatively (e.g., inferring 
that emissions-reduction capacity for one action is twice that of another action). Actions considered include 
those emphasized in past emissions reductions and considered for future action in the US, and not all 
possible actions can be included here. The analysis also focuses on technology actions rather than policy 
approaches (cap-and-trade, incentives for clean technology) used to achieve these goals.

There are many studies of the air quality and human health benefits due to the co-pollutant emission 
reductions from GHG mitigation actions.226,227,228,229,230,231 The author team surveyed the literature and found 
26 studies that either directly reported or contained enough information to quantify the monetary value 
of human health benefits from improved air quality per ton of mitigated GHG emissions. In some cases, it 
was necessary to contact the authors to ensure that the data were being interpreted correctly. These 26 
studies form the basis of the range presented in the text ($8 to $430 in 2022 dollars, with a median of $100 
per metric ton of CO2). The estimates of human health benefits and costs from these studies span a range 
of two orders of magnitude because of different methods used, geographical scope, time periods analyzed, 
and GHG reduction actions considered. Figure 14.8 presents results from the subset of these studies that 
included both the air quality human health benefits and GHG mitigation costs. A complete list of the 26 
studies and their reported values is available in the metadata for Figure 14.8. 

Discussion of short-lived climate pollutants has a strong foundation in past research, as summarized in 
the IPCC AR6,240 although some significant uncertainties remain in the magnitude of global anthropogenic 
radiative forcing for some of these species and in the net effects on climate from reductions of short-lived 
climate pollutants252 in the United States in particular.
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On the subject of social costs, since this chapter is about the link between climate change and air quality, 
it seemed appropriate to use costs that include both climate change and air pollution.244 As the text states, 
“over half of [the value is] from ozone health impacts,” so it is clear that this differs from commonly used 
costs, such as those produced by the US Government’s Interagency Working Group on the Social Cost of 
Greenhouse Gases for use in regulations, which include only damages related to climate changes.334

Major Uncertainties and Research Gaps 
Whereas there are new global modeling studies estimating air pollutant concentrations in future Shared 
Socioeconomic Pathway (SSP) scenarios, including the impacts of climate change on air quality, no study 
has yet downscaled these simulations to the United States for studying air pollution impacts. There is a gap 
in research that critically assesses how air pollution is projected to change in the US under scenarios that 
lead to decarbonization and approach net-zero emissions. There is also limited research in quantifying the 
effects of actions considered on both GHG and air pollutant emissions, as well as their costs and potential 
for emissions reductions, since much of the literature available focuses on GHG reductions without 
estimates of concurrent air pollutant emissions reductions.

Description of Confidence and Likelihood 
There is high confidence and it is very likely that broad policies to reduce greenhouse gas emissions 
economy-wide in the United States will reduce air pollutant emissions and benefit air quality and health, 
although some individual actions may not achieve these benefits (Figure 14.7).227,230,231 Many studies have 
estimated the air quality and human health benefits of greenhouse gas reduction actions, most of which 
have found that monetized benefits exceed the costs of greenhouse gas controls (see Figure 14.8 and 
associated metadata), when premature mortality is monetized using methods commonly used in the 
United States,22 such as those used by the EPA. Therefore, there is high confidence that monetized health 
benefits would exceed costs for many greenhouse gas reduction actions, and it is likely that many specific 
actions will also have health benefits exceeding costs.19,226,229 Based on several individual studies, there is 
high confidence that pursuing actions that emphasize reduced fossil fuel use, improved energy efficiency, 
and reductions in short-lived climate pollutants would not only put the United States on a trajectory that 
would substantially reduce GHG emissions and approach net-zero emissions (KM 32.4) but also substantially 
improve air quality and health.224,231
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