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Introduction 
The Fifth National Climate Assessment assesses the many ways climate change affects people, nature, and 
infrastructure across the Nation and around the world. The chapters are divided up by sectors and topics, 
such as water (Ch. 4), food (Ch. 11), economics (Ch. 19), and social justice (Ch. 20). They are also organized by 
region, from the Northeast (Ch. 21) to Hawaiʻi and the US-Affiliated Pacific Islands (Ch. 30).

But in reality, the impacts and risks of climate change unfold across interacting sectors and regions. For 
example, a forest fire in one region (Ch. 7) can affect air quality (Ch. 14) and human health (Ch. 15) in other 
regions as well (Chs. 21–30), depending on where winds blow. Further, climate-related hazards interact with 
multiple stressors that might seem like they have nothing to do with climate change, such as the COVID-19 
pandemic, economic recessions, or social inequities. For instance, different households with different levels 
of wealth can have very different capacities to evacuate in advance of a hurricane or recover if their homes 
are damaged (Chs. 9, 20, 22, 23).

As a result, if the perspective of only a single sector, topic, or region were considered, many climate impacts 
might be missed or overlooked. The consequences of climate change would be unexpected and surprising. 
And at the same time, the prospects for climate responses, whether through adaptation or mitigation, also 
fundamentally depend on these same interactions across sectors and regions. For example, using water 
(Ch. 4) for hydropower (Ch. 5) can impact fish in rivers (Ch. 8), as well as water supply for agriculture in rural 
communities (Ch. 11) and residential use in big cities (Ch. 12). Without considering such types of interactions, 
climate responses will be less effective, and there could be missed opportunities.

This chapter is about these deep connections inherent to climate impacts, risks, and responses. The chapter 
considers these interactions and interdependencies across sectors and regions as complex systems that can 
lead to cascading impacts and sudden failures, as well as sometimes surprising potential for reducing our 
emissions of heat-trapping gases and preparing for climate risks that can’t be avoided.

The chapter is organized as follows. First, it introduces what we know about complex systems and explains 
how complex systems—involving interactions across sectors and regions—can lead to climate impacts 
that happen faster than expected or can limit future options (KM 18.1). Second, the chapter assesses how 
complex, interacting climate impacts and responses can be most stressful for overburdened communities 
(KM 18.2). Third, the chapter evaluates how collaborative approaches to generating knowledge about 
complex systems can lead to better climate responses (KM 18.3). Finally, the chapter considers the degree to 
which current governance approaches are adequately prepared to handle the complexity of climate change 
(KM 18.4). 
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Key Message 18.1  
Human–Nature Interconnections Create Unexpected 
Climate Risks and Opportunities 

Human–natural systems are dynamic and complex. Interconnected networks of people, 
infrastructure, commodities, goods, and services influence changing climate risks and are in-
creasingly vulnerable to their impacts (high confidence). The vulnerabilities in these networks, 
and their effects on human–natural systems, strongly depend on human responses and other 
compounding stressors (high confidence). Decision-makers seeking to reduce climate change 
risks have to navigate diverse and sometimes competing objectives and perspectives across 
many actors, institutions, and geographic scales while reconciling deep uncertainties and 
limits to predictability (high confidence).

In a changing climate, interconnections among human and natural systems give rise to both successes and 
failures. For example, power systems can fail if exposed to extreme wind or extreme heat (KM 5.2). When 
they fail, transportation, water and wastewater treatment, telecommunications, health services, and many 
other economic activities are also disrupted (KM 19.3).1,2 The interactions among people, systems (e.g., 
networks, nature), and sectors thereby transmit opportunities and risks from one to another (e.g., KM 27.4), 
such as from the power system to the transportation system. These interactions lead to new risks and can 
both increase and limit existing threats.3,4,5,6 Figure 18.1 shows six interconnected and overlapping features of 
human–natural systems; each of these features contributes to the complexity of the systems and influences 
the effectiveness of climate mitigation and adaptation actions. Box 18.1 illustrates these types of interactions 
through a specific example, data centers.

Climate change makes the existing interconnections between human and natural systems more important 
for two reasons. First, many human and natural systems have conditions in which a small shock or 
change can produce very large impacts, but these conditions are rarely known in advance.7 For example, 
the winter storm in Texas in February 2021 was a relatively brief 10-day shock of extreme cold weather, 
but it caused cascading failures across many sectors (e.g., energy, water, health), as well as fatalities and 
long-lived economic impacts for the region and for individuals.8 There is evidence that warming in the 
polar north can increase the potential for these types of winter storm shocks in the US.9 Second, climate 
change puts natural systems into fundamentally new conditions, so there is a greater chance of expe-
riencing these large potentially negative impacts. Climate change–driven aridification of the American 
Southwest is an example of a fundamental change that has resulted in more persistent and severe heat 
as well as drought extremes. The consequences of this fundamental change are complex, increasing the 
potential for compounding and cascading impacts. These effects include simultaneous increases in the 
potential risks for human health, disruptions to critical transportation services, stress on power systems, 
and water scarcity conflicts across regions and sectors.10,11 The overall risk of bad outcomes increases, and 
the sources of risk are more complex. There has been substantial progress in the study of complex, adaptive 
human–natural systems.3,12,13,14,15,16,17,18 Innovations across many disciplines are helping to address intercon-
nected risks.19,20,21,22,23,24,25,26 Further, climate mitigation and adaptation actions depend on one another and 
interact. They both require resilience to intensifying and increasingly complex mixtures of future influences, 
shocks, and hazards. Figure 18.1 shows how these future influences can be climate-related hazards, such as 
floods, droughts, or wildfires; environmental shifts, such as changes in forest composition; or social trends 
or disruptions, such as from changes in economies, political contexts, cultures, or disease.2,5,12,16,22,23,26,27,28,29 
Mitigation and adaptation involve major changes to human–natural systems with global to local implications 
(KMs 31.1, 32.5). They can create fundamental shifts in supply chains, consumption patterns, technologies, 
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and competition over constrained natural resources (also see Focus on Risks to Supply Chains).13,27,30,31,32,33,34 
These changes are expected to continue to have disproportionate impacts on exposed populations and 
ecosystems (KMs 4.2, 5.2, 8.3, 9.3, 15.2). 

There are therefore trade-offs, linked benefits, and dependencies among energy transitions, adaptation 
actions, and sustainability goals (KMs 17.4, 25.4, 31.3, 32.2).12,15,19,22,28,35,36,37,38,39,40 For example, an increased 
supply of clean energy helps power air-conditioning to keep homes cool under intensifying heat while also 
ensuring that this increased energy usage does not cause emissions of heat-trapping gases. This situation 
also has implications for social equity and justice, as poverty reduction and improved energy security 
are needed for all households to afford adequate air-conditioning. These interactions demonstrate the 
importance of accounting for diverse forms of knowledge, social and institutional power dynamics, and 
justice in navigating risks, challenges, and benefits of interventions and policies (Figure 18.1; KMs 16.3, 17.4, 
20.1, 31.3).31,41,42,43 Recent advances offer promise for assessing risk–benefit trade-offs, interconnections, and 
sequences of action or inaction across scales.44,45,46,47 However, rapidly changing human systems, their mul-
tisectoral dynamics, and their interconnections with natural systems create deeply uncertain futures. Many 
futures are possible, and there is disagreement on how probable they are or how they may shape different 
human–natural systems’ responses. Therefore, significant challenges remain for measuring risk–benefit 
trade-offs when evaluating potential actions.48,49,50,51 

Recognition of these deep uncertainties and the difficulties in predicting complex interconnections among 
human and natural systems over long time periods has led to an approach called exploratory systems 
modeling.52,53,54 This approach considers diverse scientific perspectives and uses scenarios to better 
understand a wide array of possible future outcomes. For example, scenarios can examine the consequenc-
es of extreme weather conditions that have never previously happened but may happen under a future 
climate. The approach aims to discover what future conditions, actions, and outcomes are the most conse-
quential.45,47,55,56,57 Capital investments associated with new energy sources and climate adaptation are both 
expensive and long-lived. Exploratory modeling of benefits and impacts of these investments can help avoid 
the unintended amplification of risks and increase future resilience. Exploratory modeling can support 
adaptation planning by providing a wider array of futures, such as for coastal systems under sea level 
rise,58 and by more clearly identifying responses as they occur among interconnected, complex human and 
natural systems.
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Interacting and Overlapping Features of Human–Natural Systems

Climate-related experiences and actions connect with many other activities and contexts.

Figure 18.1. Interacting and overlapping features of human–natural systems shape actors’ capacities to re-
spond to climate change. The effectiveness of decisions and actions—taken or not (teal center of the figure)—is 
shaped by multiple other features (outer rings). Ways of knowing (light blue ring), such as local, Indigenous, or 
scientific knowledge, are a foundation that determines how climate risks and responses are perceived and un-
derstood. Moving outward, interactions across sectors (e.g., water and energy) and geographic scales (e.g., from 
local neighborhoods to the Nation as a whole) determine risks and responses under both climate-related haz-
ards (e.g., flooding, drought, wildfire, and heat) and non-climate influences (e.g., social inequities and cultures). 
Ultimately, these features together define the complexity inherent to climate risks and responses. Adapted from 
Brelsford and Jones 2021.59

Box 18.1. Data Centers Create a Critical New Interconnection  
Between Energy, Water, and the Economy

Data centers are buildings that house large computer systems that support online activities and much of the US econ-
omy. There has been rapid growth in the number and size of data centers as the national economy has shifted toward 
digital communication and activities. Although water and energy use of individual data centers can be difficult to measure 
precisely,60 their water and energy footprint is large—accounting for 1.8% of total US electricity usage and 510 million 
cubic meters of water in 2018—and is an increasing focus of research.61,62,63 The siting of data centers is a complex 
problem, influenced by local and state government incentives as well as by land, energy, and water availability to support 
cooling, such as in climates favoring evaporative cooling. The future demand for data centers, together with their needs 
for water and energy and their influence on linked water–energy–land systems, will vary considerably geographically.62 
Given that data centers depend on both water and energy and are themselves infrastructure critical for the functioning of 
the economy, data centers create a new interconnection between energy, water, and the economy. 

In the western US, where arid climates are favorable to the evaporative cooling often sought out for data center oper-
ations, water and land are inextricably linked through prior-appropriation water law (KM 28.1).64 As a result, securing 
adequate supplies of water to support data center demands can become a complex and potentially contentious exercise 
in acquiring agricultural land and fallowing it, a process that is dependent on state laws governing the transfer of water 
rights. Moreover, the increasing potential for large-scale, long-term droughts in the western US could lead to unanticipated 
events (KMs 4.1, 6.1, 28.3). For example, increasingly heavy base-load water consumers such as data centers may make 
the water system less able to adapt to drought through short-term conservation. Increasing attention to the environmental 
footprints of new data center projects in the western US potentially signals a new interconnection and potential point of 
conflict between economic sectors (KM 6.3), such as technological industries versus agriculture. 
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Key Message 18.2  
Complex Climate Impacts and Responses Further 
Burden Frontline Communities

Compounding and cascading interactions among sectors, hazards, and geographies magnify 
the impact of climate change and societal responses for already-overburdened groups (high 
confidence). However, social vulnerability assessments tend to evaluate risks and impacts by 
sector, hazard, or jurisdiction, and most complex-systems models do not yet account for social 
and political dynamics (high confidence). Data about how complex systems affect frontline 
communities under climate change are severely lacking, especially for hard-to-reach popula-
tions, and this can lead to disproportionate risks and impacts for these groups  
(high confidence). 

The complex systems described in KM 18.1 can create cascading and compounding climate impacts that 
particularly affect people and communities with little flexibility to absorb additional stress. This includes 
smaller and more rural communities, lower-income households, racialized minorities, people with health 
conditions and disabilities, pregnant people, caregivers, young children, and older adults (KMs 4.2, 15.2, 
16.2).18,65,66,67,68,69,70,71 The combination of complex societal factors (Figure 18.1) with people’s multiple roles 
and identities shapes their lived experiences of multiple shocks and stressors (Figure 18.2).72,73,74 It is not 
an accident that access to land, housing, infrastructure, food, and water in the US is highly unequal.67,75 
Within a context of institutionalized inequality and uneven access to safe housing and quality infrastruc-
ture, new and conflicting private- and public-sector responses to complex climatic and non-climate events 
often reinforce existing inequities.18 At the same time, each person carries multiple identities and plays 
multiple roles, creating intersectional vulnerabilities that can intensify direct impacts of climate change 
and indirect impacts of climate actions by more privileged groups. For instance, in rural Alaska, climate 
change is rendering more difficult the lives of Iñupiat women as they care for multiple generations, maintain 
land-based food and cultural systems, and endure gender-based violence,76 while young, single men working 
in the oil and gas industry are experiencing the energy transition very differently. 

Increased exposure to flooding provides an example of how compounding and cascading interactions and 
intersectional vulnerabilities can amplify harm in already-burdened communities. Legacies of inequitable 
access to residential home loans, municipal incorporation to isolate wealth in suburbs, and infrastruc-
ture investments that privileged certain neighborhoods and municipalities over others have concentrated 
low-income people, African Americans, and other frontline communities in places with high flood risk.77,78,79,80 
Federal flood risk response programs privilege predominantly White and wealthier communities by giving 
them more funding for levees or seawalls.81 These measures worsen downstream or down-coast flooding 
in places that might not be able to afford such infrastructure.80 Federal programs also disproportionately 
fund predominantly White communities to voluntarily relocate from floodplains (Figure 20.3),82,83,84 while 
low-income people, including renters, receive less assistance and have to move farther away to places 
with fewer amenities.85 Box 18.2 shows a different example of how cascading and compounding events can 
worsen long-standing inequities. It discusses how a wildfire exacerbated social conflict over land, housing, 
and infrastructure in California. Accordingly, people’s cumulative vulnerability can be understood and 
addressed only through multiple scales of analysis (e.g., Turek-Hankins et al. 202086) and through integrated 
strategies for housing, planning, social services, lending, and racial justice.

Models of how climate impacts affect complex systems and how societies can respond usually do not 
account for people’s diverse roles, identities, and lived experiences nor the social, political, and governance 
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characteristics of decision-making.3,87,88,89,90 For example, political polarization, in addition to structural 
inequities, increasingly shapes individual and government responses to disasters and long-term planning.91,92 
This can lead to a patchwork of mitigation and adaptation efforts across a region, which can weaken overall 
system function.93,94,95 Data gaps exacerbate the modeling uncertainties described in Key Message 18.1, 
especially for smaller, less studied urban, suburban, and rural areas and Indigenous communities (KMs 11.3, 
16.2).69,96,97 Research on the linkages between places, such as how impacts on agriculture systems affect 
urban food security, migration, and housing demand, is also limited (KM 11.2).98 The absence of research 
on the lived experiences, climate impacts and risks, and implementation outcomes for overburdened 
communities often leads to their underrepresentation in decision-making.99 Accounting for people’s diverse 
roles and identities, modeling social and political responses to climate change, and improving data availabili-
ty can improve the modeling of complex systems and the inclusivity of decision-making tools.

Box 18.2. Wildfire and COVID-19 Lead to Compounding  
and Cascading Impacts over Time

Disasters can trigger compounding and cascading effects on displacement. While research has focused on flood-driven 
displacement in the US,100,101 other hazards are also intensifying migration pressures (see Figure 20.5). The Camp Fire, 
which devastated Paradise and surrounding Northern California communities in November 2018, illustrates how climate 
migration can trigger cascading impacts in places receiving displaced persons (KM 28.4). The Camp Fire killed 85 people, 
destroyed roughly 19,000 buildings, and displaced more than 50,000 people.102,103 Many evacuees fled to the nearby city of 
Chico, which swelled from 93,000 to more than 111,000 people.104 Chico Police Chief Michael O’Brien said, “You normally 
would have a decade to prepare for such growth. We had about 10 hours.”102 

In-migration increased traffic by 25%, sewage inflows by 16%, and annual sewage treatment costs by more than $725,000 
(in 2022 dollars). It also turned Chico into America’s hottest real estate market.102,105 Telecommuters fleeing the Bay Area 
during the COVID-19 pandemic further fueled Chico’s housing affordability crisis. Even before 2018, only 1.5% of housing 
starts were affordable to people with very low incomes, and the vacancy rate was less than 1%.106,107 A political action 
committee stoked fears around skyrocketing housing prices, new homeless encampments, and crime and drugs to shift 
the city council from predominantly liberal to conservative. Housing policy began to emphasize evictions and criminalizing 
unsheltered “vagrants,” creating significantly greater risks and impacts for Indigenous Peoples, who are disproportionately 
represented among the unsheltered.106 

Since then, climate change, worsening air quality due to subsequent wildfire seasons (Figure 14.3), housing unafford-
ability, the COVID-19 pandemic, and the shift to teleworking are fueling migration in California from rural to urban areas, 
from smaller to larger cities, and from coastal cities to more affordable and scenic suburban and rural areas.108,109,110,111 
Across the country, most cities’ climate vulnerability and risk assessments focus on future climate impacts to current 
populations without considering disasters taking place elsewhere that could affect their outlook.112 Models and assess-
ment tools that account for cascading impacts, especially those conducted at regional scales, can help steer or antici-
pate the effects of climate-exacerbated migration (e.g., Zoraghein and O’Neill 2020113). In addition, national and regional 
climate-migration and housing-resource models can help inform national and local government infrastructure, land use, 
and housing decisions. 
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Intersectional Vulnerabilities

Intersecting social and environmental factors privilege some people’s ability to respond to climate change. 

Figure 18.2. Climate impacts and societal responses exacerbate intersectional vulnerabilities. People’s gender, 
class, ethnicity, age, race, and ability form their intersectional identity (left). Intersectional vulnerabilities emerge 
when intersectional identities interact with inequities in complex systems, as outlined in Figure 18.1 (right). 
In the face of climate risks and responses, these intersectional vulnerabilities can result in unequal exposure, 
exclusion from benefits, and cascading impacts that further impact already-overburdened groups. Societal 
responses to climate change—including uneven existing resources across municipalities, decisions about where 
to allocate investments, and noninclusive ways of knowing—can exacerbate existing harms and generate new 
ones. Adapted with permission from Box TS.4, Figure 1 of Field et al. 2014.114

Key Message 18.3  
Collaborations Among Diverse Knowledge Holders Improve 
Responses to Complex Climate Challenges 

Responding effectively to complex climate challenges benefits from integrated frameworks 
and modeling approaches that incorporate diverse types of knowledges suited to specific 
contexts and needs (high confidence). Participatory and collaborative approaches and tools 
bring together diverse knowledge holders and improve the generation and use of actionable 
knowledge for complex-systems decision-making (medium confidence). These collabo-
rative approaches help navigate complex challenges, such as competing perspectives and 
knowledge uncertainties, thereby improving climate responses (low confidence).

Complex-systems responses to climate change require diverse types of knowledge, incorporating different 
ways of thinking about climate change and complexity, and often arise through participatory and collab-
orative processes (KMs 12.4, 20.2, 31.3, 31.4).115,116 While much research focuses on analyses, modeling, or 
projections specific to individual sectors, regions, or actors, a richer diversity of information is needed 
to fully understand complexity.116,117 Decision-making for complex systems benefits from knowledge 
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of the interdependence of human–natural systems; the venues where decisions are made; the actors 
participating and impacted by decisions, politics and ideologies; and the values, attitudes, and beliefs of 
people and institutions (Figure 18.3).117 Such knowledge stems from diverse disciplines as well as inter-
disciplinary and transdisciplinary endeavors. Interdisciplinary work integrates knowledge from different 
disciplines, and transdisciplinary approaches often additionally integrate knowledge from researchers and 
nonacademic partners such as communities or decision-makers.118,119,120,121,122 For instance, social science and 
humanities research that examines the distribution of inequities of climate change has helped to highlight 
the overlapping and often compounding impacts on overburdened groups and can be used to ensure the 
inclusion of those communities in climate response decision-making (KM 18.2). Transdisciplinary knowledge 
that draws from both academic and nonacademic actors can help clarify systemic feedbacks and path 
dependencies that might go unnoticed if viewed from siloed disciplinary perspectives alone (Figures 18.3, 
29.16).123,124 Overall, complex-systems responses necessitate moving beyond traditional siloed knowledge 
production processes to integrated approaches that include diverse types of knowledge and actors.125,126,127

The diverse types of actionable knowledge needed for responding to complex climate risks include data 
and modeling, decision support tools, case studies, art, and lived experiences (KMs 4.3, 13.2, 17.1; Box 19.1). 
Different types of knowledge can be critical depending on the context and needs. For instance, qualitative 
forms of knowledge, such as oral histories or ethnographies, provide rich, place-specific understandings of 
how complex systems function and how climate-related experiences influence behavior.128 Narratives and 
crowdsourced data of extreme events, including how people cope with them, have improved the integration 
of climate knowledge into social and cultural life.129 Stories have advanced climate and energy solutions by 
allowing exploration of the intersection of nature, humanity, and technology.130

Integrated frameworks that bring together different knowledge types across various sectoral and regional 
contexts are essential for holistic analyses of complex systems. For example, recent developments in 
coupled human–natural systems modeling have not only examined cascading impacts across sectors and 
scales but have also incorporated the feedback relationships from social and political systems back into the 
models.131 The Water Utility Climate Alliance has used a “chain of models” approach to link global climate 
models (GCMs) to hydrological models and then water utility decision-making tools.132 Connections between 
GCMs and urban tree canopy models have supported analysis of heat management strategies across 
multiple dimensions, including air quality, irrigation demand, and greenhouse gas emissions.133,134,135 Food–
Energy–Water (FEW) systems studies have developed frameworks126,136 to better understand regional to 
global dynamics within cross-sectoral FEW systems.131,137 

These advanced integrated frameworks draw on knowledge that stems not just from academics and 
researchers, but also from a wide range of experts, including practitioners, decision-makers, and local 
and Indigenous Peoples.116,127,138,139,140 There are increasing examples of community and citizen scientists 
monitoring specific environmental indicators at temporal and spatial scales otherwise infeasible (see Table 
12.2).141,142,143,144 The long-term environmental knowledge and socioecological memory held by Indigenous 
Peoples has helped to detect, understand, and predict complex changes in climate systems.138,145 Further, 
land management approaches based on Indigenous Knowledge have long emphasized flexibility and 
diversity of resources and serve as successful examples of resilient practices under complex environmental 
changes (e.g., Box 27.3).138 

Connecting different knowledge holders and knowledges requires a different type of scientific practice 
that is more collaborative, participatory, or community-engaged.116,146,147,148,149 Approaches such as copro-
duction, which bring together diverse knowledge holders with potential knowledge users, have proven 
to be successful in developing actionable knowledge for complex systems (Box 18.3; see Key Message 
20.2 for more on engaging diverse stakeholders).150,151,152 Such approaches allow for iteration and delib-
eration about multiple worldviews and have been effective in improving credibility, relevance, and trust 
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in knowledge.115,139,153,154 They also enable better understanding and management of knowledge uncer-
tainties.154,155,156 For example, participatory modeling of complex socioecological systems has included 
experience-based practitioner knowledge to improve identification of system boundaries, elicit realistic 
management alternatives, and increase the decision-relevance of outputs.21,132,140,157 The county of Los 
Angeles has used participatory modeling to identify cascading impacts across infrastructural systems, 
their downstream effects for residents, and key intervention points.158 Collaborative decision-making 
under deep uncertainty (DMDU) approaches, such as flexible adaptation pathways, scenario planning, 
and decision scaling, seek to develop robust climate responses for multiple potential futures rather than 
planning for a single best-estimate future, and they have also been positively received by decision-makers 
(see Figure 18.4).159,160,161 The US National Park Service has used collaborative scenario planning, bringing 
together natural and cultural resource managers and subject-matter experts, to negotiate social and 
scientific uncertainties associated with climate change and inform the setting of conservation and resource 
stewardship goals.162,163,164,165

Effectively implementing and sustaining such collaborative processes requires specialized boundary orga-
nizations and climate services agencies (Box 18.3).166,167,168 These boundary agencies facilitate, translate, and 
mediate engagements between scientists and different actor groups. NOAA’s Climate Adaptation Part-
nerships, USGS’s Climate Adaptation Science Centers, USDA’s Climate Hubs, and university agricultur-
al extension services have emerged as leading boundary agencies for the production and use of climate 
information through trust- and partnership-building with various knowledge-holder and user groups.169,170

Evaluation of effectiveness and equity is an important aspect of efforts to use climate-relevant knowledge in 
complex-systems decision-making. While there is increasing evidence that many collaborative approaches 
(such as coproduction, collaborative scenario planning, and DMDU tools) have been effective in improving 
the production and use of complex-systems knowledge in decision-making (Box 18.3), there has been limited 
examination of the long-term outcomes and equity of these processes and tools.151,152,171 Additionally, the 
relative advantages and disadvantages of when and where different types of knowledges are most useful is 
also not well understood.119,172 Overall, despite preliminary successes, understanding of the transferability, 
impact, and equity of different collaboratively generated knowledge and tools is still emerging.
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Interacting Climate Responses and Knowledges Across Scales

Climate responses, ranging from the individual to global scale, interact with and draw from diverse knowledges.

Figure 18.3. Activities of government at multiple scales (green) affect climate risk (red) via multiple pathways, 
by decreasing or increasing greenhouse gas emissions (gray) and supporting adaptive (or maladaptive) actions 
(pink, purple). Moreover, government actions are influenced by the opinion and interests of residents, business-
es, and other organizations (orange), and they in turn shape the actions of households and businesses (pink, 
blue). Interacting actors are nested within multiple spatial scales (left) and also rely on different knowledge 
sources for decision-making (right). Adapted from Moore et al. 2022.88
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Box 18.3. Different Forms of Knowledge and Collaboration Across  
Groups Support Local Adaptation

Governments, businesses, community organizations, and residents in coastal cities have been early implementers of 
collaborative approaches to create actionable knowledge for complex climate responses (KM 22.1; see also Box 9.1). The 
Little River Adaptation Action Area in Miami-Dade County, Florida, is one such example of a new flexible planning tool.173 
This area is exposed to flooding worsened by sea level rise, and the challenges can be particularly stark. For example, 
when high tides and rainfall happen at the same time, septic tanks fail, leading sewage to back up into homes and spill 
into and contaminate waterways. As one resident described it, “I could live with a little bit of flooding if I knew the water 
wasn’t full of sewage.”173 Systemic drivers of disparities across neighborhoods go back decades, and financial hardship 
means that households often struggle to reduce risks from flooding, as well as from chronic humid heat in the home.174 
Starting out in 2020, the Little River Adaptation Action Area has three main goals: 1) to use data to inform capital projects 
reducing climate risks (see also KM 31.5), 2) to support collaborative approaches in which community members’ knowl-
edge and experience guide climate solutions (see also KM 31.3), and 3) to break down silos and coordinate responses 
across governments, households, and the private sector. Implementation of this flexible adaptation tool has been led by 
resilience staff in the region, including importantly municipal chief resilience officers. Supported by research–practice 
partnerships such as the Resilient305 Collaborative, the county has enabled community-based implementation of multiple 
regional climate strategies.173,175,176,177,178

The Little River Adaptation Action Area has thereby been able to test out collaborative approaches and improve respons-
es to complex climate challenges. First, the planning effort has been guided by overarching principles such as making 
residents safer through equitable engagement, fair policies, and direct investments; working with nature; and supporting 
flexible, integrated climate responses.173,175,176 These guiding principles create clear signposts for designing and updating 
the collaborative planning process. Second, community workshops and research–practice networks have supported the 
use of physical and socioeconomic information and diverse knowledges in exploring locally preferred response strate-
gies with support from state and federal partners, such as septic-to-sewer conversion, expansion of green spaces, and 
improvement of housing.174,178,179 Granular, transparent data are being used to understand the distribution of climate and 
policy impacts such as flood and heat exposure across communities, as well as to understand building, household, and 
neighborhood characteristics that shape impacts on families. Third, evaluation has been embedded into planning efforts, 
such as by monitoring investments made and how residents perceive them.180 These evaluation efforts require commit-
ment and rigor, and they are necessary to understand how effective climate responses are for both climate goals and 
broader priorities, to identify unexpected benefits, and to support course corrections where needed. Fourth, approaches 
are expanding to address deeper uncertainties, such as the implications of large amounts of sea level rise and pathways 
that could help ensure longer-term flexibility where it may be needed.181 
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Key Message 18.4 
New Governance Approaches Are Emerging, but Gaps 
in Practice and Evidence Persist

Climate change presents challenges for managing risks and responses across different levels 
of government, the private sector, and civil society. Current governance entities and their 
existing jurisdictional authorities are often unable to resolve conflicts posed by the wide-
ranging and unprecedented interactions and complexities of climate risks and more localized 
compounding stressors (high confidence). Local and regional governments have experi-
mented with alternative institutional arrangements, funding mechanisms, and decision co-
ordination (medium confidence). Thus far, however, there is only preliminary evidence of their 
effectiveness (low confidence). These pilots and other innovations developed for climate mit-
igation and adaptation may well present opportunities for replication and broader successes 
in other locations and different local contexts (medium confidence).

Climate responses and management practices are expanding to address complexity in coevolving human–
natural systems. The need for science-informed, inclusive decision-making around complex climate 
risks is immense. The form and quality of governance of individual and interacting systems are shaped by 
government agencies, civil-sector actors, and private-sector entities.182 The actors and their roles vary 
across jurisdictions and are dependent on constitutional authorities, modes of control (e.g., proprietary, 
regulatory, budgetary), geographic territories, climate-related functions, technical capacities, budgets, 
access to financial and intellectual resources, and institutional or political power. The current state of 
these factors depends on institutional legacies and their momentum or inertia in response to changing 
climate conditions.183

There are inherent challenges in governing complex systems in response to climate change (KM 31.3). 
Relevant jurisdictions tend to be highly defined and siloed despite overlapping social or environmental 
system interactions.184 Structural inequities established in past governance institutions are often inex-
tricable from current decision-making processes (KM 20.1). Market failures are sometimes ignored (e.g., 
disclosure of a property’s climate risks) or exacerbated by public policy (e.g., securitizing mortgages for 
risky properties, paying out insurance claims for repeat losses, or decreasing housing affordability as a 
result of mitigation efforts). Access to financial and intellectual resources has historically been weak at the 
local level and highly variable across geographies and urban to rural gradients.185 Governance of complex 
systems requires flexibility beyond the formal governance of any one system.186 Alternative processes for 
decision-making have been proposed or are in preliminary levels of implementation. These include an 
increased and explicit reliance on available scientific, engineering, and social-science evidence to inform 
policy. Iterative, participatory planning and deliberation inclusive of all residents or stakeholders are also 
possible. Similarly, transparency and accountability in public information and deliberations are increas-
ingly important. Improved coordination strategies between governing entities—adjusting to evolving 
conditions and improving information—include decentralization and de-siloing in the public sector across 
agencies or jurisdictions, effectively reorganizing government. Governing entities are also looking at making 
longer-term commitments in public works and social programming and in longer-term visioning scenarios 
than their current budgetary and planning terms have traditionally prescribed (KM 12.4). Finally, governing 
institutions increasingly recognize the distribution of risks, path dependencies, and costs and burdens 
across communities.18,187
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The state of evidence on effective governance approaches varies for each characteristic of 
complex-systems management:

• Complex systems are often characterized by deep uncertainty—the presence of systemic structural 
uncertainties or unknowns without objective probabilities. Climate risks and possible scenarios 
exacerbate this uncertainty (KM 18.1). Stakeholders such as private-sector interests, public-sector 
officials, and civil-sector representatives may disagree about the likelihood of future scenarios or con-
sequences of decisions. Effective governance approaches include transparency in system frameworks, 
integration of contingencies and redundancies, and flexible planning and operations to avoid decisions 
that are costly or impossible to reverse (Figure 18.4).188,189,190,191 Actors are already revisiting their crisis 
management plans to avoid worst-case outcomes and reduce short-term losses.

• Wide-ranging actors within complex systems may have multiple, often competing objectives regarding 
climate actions. In response, effective governance approaches include establishing consistent criteria 
to evaluate alternative actions, sometimes using consensus-based principles. Inclusive governance, 
stakeholder consultation, and explicit consideration of multiple criteria are other strategies 
for addressing cross-system conflicts. However, interactions among actors across overlapping 
governance structures and systems, combined with strategic behavior for individual decisions, can 
complicate these processes.192,193,194,195,196

• Complex systems are often characterized by broadly distributed knowledge and power—with diverse 
actors controlling knowledge about different parts of the system. Approaches in these polycentric 
governance systems include processes for data sharing, decision coordination and deliberation, and 
de-siloing of decision-making in related areas.117,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212  
Mechanisms such as market-based approaches can sometimes allow for interaction of diverse 
actors via price signals, reducing the need for direct, centralized regulations, although these efforts 
may not account for inequitable financial access and outcomes across stakeholders, particularly 
overburdened communities.213,214

• Governance of complex systems tends to be geographically and functionally nested—controlled by 
multiple jurisdictions such as municipal, state, and federal authorities (Figure 31.4). Coordination 
across actors in different jurisdictions, together with improved clarity and boundary definitions, 
can therefore be valuable (Figure 18.3). The primary tools of nested governance structures—that is, 
regulation, statute, program rules, and coordinated budget transfers from multiple sources—can be 
negotiated through coordination rather than preemption.202,215,216,217,218,219,220,221,222,223,224

• Finally, feedbacks and path dependencies are common in complex systems. Choices at one point in time, 
such as the capacity and siting of physical infrastructure projects, can either expand or limit options 
later on (Figure 18.4). As a result, the full effects of management actions can be difficult to anticipate, 
particularly in the longer run. Path dependencies and policy feedbacks can lead to immediate 
commitments that restrict later change. Effective governance strategies include adaptive management 
approaches that repeatedly monitor, evaluate, and amend actions, although such governance 
strategies are not well developed.225,226,227,228,229,230,231,232,233,234,235

Overall, there is only preliminary evidence of the effects of alternative governance structures on climate 
mitigation and adaptation actions or their outcomes. Existing governance structures largely predate con-
temporary public climate responses and extend histories of US federalism, home rule, privatization, and 
ad hoc regional collaborations or special districts created in response to temporal needs or crises. These 
structures have generally not been reconfigured in the face of complex climate challenges, with some 
exceptions (KM 31.3). The governance structure between the Federal Government and state governments 
across and between most systems is constitutionally defined. The resulting flows of resources and other 
forms of assistance are therefore statutorily defined by program authorizations and appropriations. Existing 
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governance entities such as state government agencies have attempted broad internal coordination among 
sub-state governments, although adjustments have met with varied success and contested leadership.236

There are more examples of alternative governance structures between and within subnational 
governments. Examples of the former include the cross-state Regional Greenhouse Gas Initiative for 
climate mitigation actions or the cross-county Southeast Florida Regional Climate Change Compact (Box 
18.3) for climate adaptation; these efforts attempt to manage multiple systems across different jurisdic-
tions.237,238 Other regional coordinating entities have been created across states, counties within states, or 
cities within counties, including those affiliated with the Alliance of Regional Collaboratives for Climate 
Adaptation. But these efforts are typically preempted or bounded by the constitutional authorities allowed 
by the superseding level of government (for example, a state over counties). There is preliminary evidence 
about the effectiveness of individual climate professionals (e.g., chief resilience officers and related bound-
ary-spanners).203,239 However, the long-term outcomes from these efforts have not been conclusively 
measured.240 
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Governance of Complex Systems  

Governing complex systems involves pathways of decision-making across time.

Figure 18.4. Adaptively managing complex systems involves a series of choices and actions through time. 
There are path dependencies shaped by the past and present, opportunities for maintaining flexibility under 
deep uncertainties, and needs for iterative learning through time. Governance of complex systems is more effec-
tive when it is flexible, inclusive, integrated, collaborative, and adaptive. At each decision point in time (circles 
with arrows), diverse decision-makers evaluate possible solutions available at that time and choose a path for-
ward (people in gray considering benefits and trade-offs of different possible pathways). Given these responses, 
alternate pathways (red, orange, yellow, and green) may remain possible for the future or become closed off. At 
each decision point, an important consideration is how actions taken may expand or contract the options avail-
able in the future. Adapted with permission from Figure SPM.6 in IPCC 2023.241
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Traceable Accounts
Process Description
The scope of this chapter was first developed by considering 1) the corresponding chapter in the Fourth 
National Climate Assessment (NCA4) as a starting point; 2) new emphases on topics relevant to complex 
systems, intersectoral interactions, and multiple stressors across NCA5; and 3) evolving areas of research 
and practice. The chapter lead identified important areas of expertise for the author team, including com-
plex-systems methods, engagement methods, and topical expertise (e.g., energy–water–land, coastal, 
urban). Potential authors were identified from the nominations database, literature searches by the chapter 
lead and coordinating lead author, and the authors of the NCA4 chapter.

The First Order Draft, Second Order Draft (2OD), Third Order Draft (3OD), and Fourth Order Draft (4OD) 
were developed from the Zero Order Draft (ZOD) narrative outline through a multistage process. First, 
feedback on the framework and topics of the chapter was solicited via a public engagement workshop. 
Discussions focused on the NCA5 chapter framework for complexity, lived experiences, and the 
management of complex interactions. Second, chapter authors discussed the outline, and a lead author, 
along with accompanying contributors, was identified for each Key Message, figure, and box. Third, drafting 
proceeded through iterative processes of full-team and subgroup conversations on the scope and approach 
for each chapter element, literature reviews, and preparation of text and graphics, as well as identifying 
emerging assessment findings, areas of overlap across chapter sections, and potential directions for 
refinement in subsequent drafting stages. Fourth, cross-chapter discussions and the ZOD public review 
comments were used in the revision of the 2OD. These themes were further prioritized as the chapter was 
revised in the development of 3OD text and figures, also incorporating the review comments on the 2OD. 
The 4OD was then developed on the basis of public review and NASEM (National Academies of Sciences, 
Engineering, and Medicine) comments, with monitoring by the chapter review editor.

Key Message 18.1  
Human–Nature Interconnections Create Unexpected 
Climate Risks and Opportunities 

Description of Evidence Base 
Key Message 18.1 material draws heavily from the recent assessment conducted in development of the 
Multisector Dynamics (MSD) vision report,3 which was an in-depth assessment by a diverse research 
community directly building from NCA4, as well as recent literature outside the scope of that report. In 
addition to citing the report itself, Key Message 18.1 directly cites underlying literature from the MSD 
vision report and other fields such as socio-ecological-technical systems, sociohydrology, complex 
systems, exploratory modeling, and decision-making under deep uncertainty.5,12,13,14,15,16,17,18,25,54,56,242 Given this 
foundation, the Key Message draws from an expansive evidence base, for which agreement in the literature 
pertains both to areas of agreement across studies and to deep uncertainties that remain.

Figure 18.1 is a combination of new and existing work. The underlying source was a conceptual diagram 
of complexity in urban systems and the lenses through which it can be organized and understood. Here, 
the figure has been adapted for complex systems as a whole, pursued through an actor-oriented lens 
and reflecting the authors’ review of figures that explain different aspects of complexity in socioecolog-
ical systems or coupled human–natural systems under a changing climate.5,29,243,244,245,246,247,248,249 The MSD 
vision report executive summary Figure 1 was also a source of inspiration, yet the figure included in this 
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Assessment centers actors and their capacities to respond. This adjustment reflects increasing recognition 
of the role of people in complex systems and associated climate risks and responses.

Major Uncertainties and Research Gaps 
Major uncertainties are explicitly acknowledged in the discussion of deep uncertainties inherent to complex 
systems. Based on the available literature, we provide assessment of emerging approaches relevant to 
complex systems under such uncertainties. There are deep uncertainties in predicting complex intercon-
nections among human and natural systems over long time periods, which are particularly exacerbated by a 
lack of human systems research that focuses on the interactions between human and natural systems.12,14,22 
Exploratory systems modeling52,53,54 is developing approaches to address these deep uncertainties.

Description of Confidence and Likelihood 
Given the robust evidence underpinning this foundational section of the chapter, along with high agreement 
about that evidence (see especially the foundational assessment by Reed et al. 2022b3) Key Message 18.1 is 
assessed with high confidence overall. The first confidence-assigned statement in the Key Message describes 
the increasing vulnerability of interconnected human–natural systems to risks from climate change. Given 
the high degree of agreement among voluminous sources of evidence,1,3,5,12,14,15,16,20,25,26,28,29,30,35,242,248,250, we 
assign high confidence to this statement. The second statement describes how these vulnerabilities depend 
on human responses and other compounding stressors. Given the high degree of agreement among many 
sources of evidence (see above), we assign high confidence to this statement. The final statement describes 
the diverse and sometimes competing objectives that decision-makers will need to navigate in managing 
climate risks. Given the high degree of agreement among ample sources of evidence (see above), we assign 
high confidence to this statement.  

Key Message 18.2  
Complex Climate Impacts and Responses Further 
Burden Frontline Communities 

Description of Evidence Base 
Evidence of the intersectional impacts of natural hazards, decarbonization efforts, and climate adaptation 
is well documented. Quantitative assessments of program outcomes and post-disaster outcomes, with a 
large number of data points, consistently show that more rural or smaller municipalities are less able to 
attract resources for adaptation (e.g., Mach et al. 201983). Numerous case studies and spatial and quan-
titative assessments provide evidence of the displacement tendencies of climate-exacerbated disasters 
and climate mitigation and resilience initiatives.73,85,109,251,252,253 In-depth qualitative research and longitudi-
nal studies of overburdened communities have studied how cyclical disasters erode community response 
capacity254,255,256 and trigger cascading infrastructure and housing effects in cities receiving groups migrating 
from or displaced by climate-related events and trends.103 Research on the climate transition from fossil fuel 
economies shows that these efforts intersect with social, cultural, and political challenges to create inter-
sectional vulnerabilities and complexities.257,258 

Major Uncertainties and Research Gaps 
Just as important as what we know about distributive impacts in complex systems is what we do not know 
or measure. Most research assessing complex systems is highly technocratic, focusing on specific events, 
discrete risks, and the impacts of cascading infrastructure systems, demographic change, and natural 
resource systems. However, complexity studies do not tend to encompass the large body of social and 
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humanities research—increasingly focusing on climate change—related to cultural, psychological, and 
effective responses to shocks; racial, gender-based, and equity-oriented studies of vulnerabilities, risks, 
and societal responses; or the roles of political ideology and violent conflict (e.g., Palmer and Smith 2014;89 
Beckage et al. 2020;87 Moore et al. 2022;88 Reed et al. 2022,242 2022;3 Rising et al. 202290). These issues can help 
explain political decision-making, protests, and post-disaster conflicts and are important for understanding 
interactions across social and physical systems in the near and long term. There is a resulting lack of tools 
and communities of practice to integrate disciplinary divides in support of complex-systems research.

Limited knowledge about climate-exacerbated migration and how receiving cities are responding results 
in uncertainties about how climate migration differs from other forms of migration, what migration means 
for overall vulnerability trends, and how it will impact other interlinked physical and natural systems. 
Information on urban–rural linkages is limited, especially in forms that can support complex-systems 
modeling. Trade-offs between mitigation efforts and adaptation strategies with competing impacts on 
individuals’ well-being are also understudied.

Description of Confidence and Likelihood 
There is high confidence in each statement of Key Message 18.2. First, there is high agreement in the 
literature that climate change disproportionately impacts already-overburdened groups (statement 1), as 
recently assessed in the comprehensive Sixth Assessment Report of the Intergovernmental Panel on Climate 
Change, Working Group II.69 Second, multiple studies with high agreement across them have documented 
the lack of social and political dynamics in complex-systems models and limitations resulting from 
sectoral, regional and jurisdictional, and disciplinary silos of vulnerability and risk assessments (statement 
2).3,86,87,88,89,90,242 Some complex-systems analyses have made first steps in incorporating social and political 
dynamics (e.g., Moore et al. 202288), but these are emerging efforts, and statement 2 is therefore made with 
high confidence. Third, data about how complex systems affect frontline communities is lacking for hard-to-
reach populations, and this can lead to disproportionate climate impacts (statement 3).97,99 This statement 
is made with high confidence given the large evidence basis on inequalities in data availability and quality 
across communities and the focus of the literature on data-rich places (e.g., Friel et al. 2011;98 Pörtner et al. 
2022;69 Reed et al. 20223).

Key Message 18.3  
Collaborations Among Diverse Knowledge Holders Improve 
Responses to Complex Climate Challenges 

Description of Evidence Base 
Key Message 18.3 and corresponding text draw from a review of various types of literature on knowledge 
for complex systems, several author team meetings and deliberations over written documents, and 
takeaways from the public engagement workshop. The write-up was also coordinated with authors of other 
Key Messages, especially Key Messages 18.2 and 18.4. Literature reviewed for this Key Message spanned 
several topical areas. The authors reviewed literature describing integrated frameworks and modeling for 
complex systems,3,123,126,127,131,136 as well as characteristics of actionable or usable knowledge.115,116,120,153,154 Authors 
also focused on literature showcasing the role of qualitative knowledge such as narratives in managing 
complex systems.128,129,130 In terms of knowledge production processes, the team reviewed the latest papers 
on co-production of knowledge and collaborative research approaches, as well as on interdisciplinary and 
transdisciplinary research.115,124,147,259 The authors also reviewed literature and case studies on Indigenous and 
Traditional Knowledges and their role in complex systems, as well as the role of citizen science.141,142,143,144 
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Studies on participatory modeling,21,140,156,157 as well as collaborative decision-support tools for complex 
systems such as decision-making under deep uncertainty and scenario planning, were also reviewed. Finally, 
research on climate services and boundary agencies was also reviewed.

Box 18.3 centers on complex coastal governance, drawing from evaluations of climate responses in Metro-
politan regions including the San Francisco Bay area, Los Angeles County, Southeast Florida, and metropol-
itan New York; a specific case example of the Little River Adaptation Action Area is discussed here. Multiple 
recent studies have examined the science–policy–practice processes and partnerships, along with the 
evolving governance systems, inherent to complex coastal climate responses (e.g., Treuer et al. 2017;260 Kim 
2019;261 Solecki et al. 2021;262 Tedesco et al. 2021;179 Troxler et al. 2021;178 Lubell and Robbins 2022263). Direct 
references are provided to relevant regional strategies and decision support forums (e.g., Miami-Dade 
County 2021;176 Miami-Dade County 2021;175 SFWMD 2021177).

Major Uncertainties and Research Gaps 
Despite the promise and potential of collaborative knowledge production processes and collaborative 
decision tools, long-term monitoring and evaluation of these processes and tools are largely lacking; hence, 
the long-term impact and effectiveness of such collaboratively generated knowledge in responding to 
complex climate risks in complex systems are not well understood.147,151,172,264 In addition, the impact of collab-
oratively generated actionable knowledge on long-term management of complex climate-impacted systems, 
particularly as it relates to procedural or distributive justice in outcomes, is not well understood.265

Description of Confidence and Likelihood 
There is high agreement in the literature, from both theoretical120,124,127 and empirical studies,117,123,131,263 that 
effective complex systems responses benefit from integrated frameworks that bring together diverse and 
context-specific knowledge. Therefore, there is high confidence in the first statement in this Key Message. 
A growing number of studies provide evidence that participatory and collaborative approaches that bring 
together diverse actors have improved the actionability of knowledge for managing complex systems,150,151,152 
but more evidence is needed on the extent to which this actionable knowledge has actually been used in 
complex-systems decision-making.266,267,268 Hence, there is medium confidence in the second statement. 
Although the theoretical literature suggests that collaborative approaches help to navigate competing 
perspectives of different actors and knowledge uncertainties,43,117,119 there are very few studies that have 
evaluated the extent to which these approaches have successfully led to improved climate responses in the 
long term.171,267,269,270 Hence, there is low confidence in the third statement. 

Key Message 18.4  
New Governance Approaches Are Emerging, but Gaps 
in Practice and Evidence Persist 

Description of Evidence Base 
The subgroup of authors for Key Message 18.4 pulled from a multidisciplinary set of research products at the 
intersection of governance, regional planning, systems theory, and jurisdictional authority in relation to both 
climate mitigation and adaptation planning, actions, outputs, and outcomes.202 The subgroup identified key 
peer-reviewed research products based on the themes categorized by subgroup members’ expertise, as well 
as the themes that surfaced in the public engagement workshop; essentially, the identification of sources 
was expansive, but the themes from which the sources were identified and classified were necessarily 
limited. Further, the subgroup sought to identify documentation of alternative governance successes and 
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failures in relation to climate mitigation and adaptation in order to expand the pool of sources to other 
disciplines that may not explicitly use governance terms.191 For each of the themes identified, there is a 
vast literature from which to pull findings. Identifying these was a straightforward process, and there was 
minimal disagreement on either the themes or the sources. 

In slight contrast, there was significant discussion regarding the level of confidence around the synthesis 
of sources’ findings, given their range of empirical inquiry and methodological rigor. The vast majority of 
evidentiary sources rely on either singular governance case studies (or, less often, a few cases) or theoretical 
exploration in either qualitative or quantitative ways.195,199 Fewer studies include sample sizes of governance 
cases that are powerful enough—or that employ comparison groups of any design—to produce conclusive 
and generalizable findings.203,221 Consequently, assessments of uncertainties and confidence are based largely 
on the variable rigor of these sources. 

Major Uncertainties and Research Gaps 
Governance, by definition, varies by geographic, social, and political landscapes, among many contextual 
factors. The first factor—geography—poses a particular challenge for the development of conclusive 
evidence of governance actions and effects.188 Essentially, each place has a unique governance framework.117 
Although rigorous qualitative and quantitative studies have been conducted regarding governance inter-
ventions and their outcomes in specific places, the sample sizes of individual monographs and consistent 
application of terms across them have consequently produced only preliminary evidence to date. As with 
urban studies and political geography, there are few multisite studies of complex-systems governance at any 
level of quasi-experimental rigor, or even basic outcome evaluations, that allow for replicable responses to 
the fundamental question posed in the public engagement workshop: What is “good” climate governance? 

Description of Confidence and Likelihood 
This fundamental methodological challenge, then, prohibits an assessment of high confidence for all com-
plex-systems governance themes—with the sole exception of their current inability to produce consistently 
positive outcomes. Further study with larger sample sizes and consistent terms of governance frameworks—
including their inputs, activities, outputs, and outcomes—is necessary to assess higher levels of confidence. 
Statements in the Key Message regarding evaluation/learning, effectiveness, and replicability are therefore 
made with low and medium confidence. The quantity of evidence around climate governance implementa-
tion and outcomes is too small to conclude that their findings are externally valid and replicable.203 Policy 
and governance literature for other subject domains beyond climate mitigation and adaptation for which 
there has been more extensive study, however, suggests that pilot governance efforts’ success may not be 
insignificant, implying a higher confidence that the implementation of current climate pilots may also yield 
positive outcomes.200,224
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