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Introduction
The Northwest—Washington, Oregon, and Idaho—encompasses diverse communities, economies, and 
ecosystems, with almost 14 million residents.1 From western coastal regions to forested mountains to arid 
shrub-steppe, the Northwest is home to numerous culturally and economically important native plants 
and animals. Northwest ecosystems provide housing, recreation, food, and income that support the 
collective health and well-being of the region’s communities and economies. The 43 Federally Recognized 
Tribes in the Northwest also rely on the region’s ecosystems to sustain their livelihoods. Climate change 
has already affected all areas in the Northwest and will continue transforming the region in consequential 
ways. Northwest communities are employing a variety of strategies to adapt to and prepare for climate 
change; however, there are limits to the long-term effectiveness of adaptation actions without comparable 
investments to mitigate climate change (KM 31.1).2,3

Climate change observations in the Northwest are consistent with projections from previous National 
Climate Assessments.4,5,6 Annual average air temperatures in the region have risen by almost 2°F since 1900. 
Washington and Idaho have warmed by nearly 2°F, and Oregon has warmed by 2.5°F. Relative to 1900–2020, 
the annual number of extremely hot days and warm nights in the Northwest has been above the long-term 
average over the past decade, and the annual number of extremely cold nights over the same period has 
been below the long-term average.7,8 By the 2080s, annual average temperatures in the Northwest are 
projected to increase by an average of 4.7°F under a low scenario (SSP1-2.6) and by an average of 10.0°F 
under a very high scenario (SSP5-8.5) relative to the period 1950–1999.9 Future warming in the region is 
expected to exacerbate regional heatwave intensities (KM 27.5).8,10 

Warmer winter temperatures have led to declines in mountain snowpack, particularly in areas with warm 
maritime climates.11,12,13,14 A greater proportion of winter precipitation is projected to fall as rain rather 
than snow.15 Warmer winter temperatures are expected to increase snow-line elevation, contributing to 
snow-dominated watersheds transitioning to mixed rain-and-snow watersheds and mixed rain-and-snow 
watersheds transitioning to rain-dominated watersheds.16,17 Summer precipitation is projected to decline 
under all scenarios, although it will be variable,9 contributing to more frequent, longer, and more severe 
regional drought conditions that increase wildfire risk and decrease water availability (KMs 27.2, 27.3). 

Interannual variability in precipitation is projected to persist, and observed lower streamflows in summer 
are expected to decrease even further due to reduced snow storage, increased evapotranspiration, and 
longer lags between summer precipitation events.18,19,20 Increasingly low precipitation in drought years 
has driven extremely low streamflows.20 Some currently permanent streams will transition to ephemeral 
streams, affecting aquatic species and regional water supply (KMs 27.2, 27.4). 

Decreased snow accumulation and increasing melt are raising the elevation of the snow line, or the point at 
which annual accumulation and melt of snow are equal, which is causing Northwest glaciers to recede,21,22 
affecting recreation industries and regional water systems (KMs 27.3, 27.4, 27.6). Over the long term, 
streamflow reductions are expected in basins historically fed by glaciers.23 Debris flows and landslides are 
expected to become more frequent as glacial recessions leave more bare land exposed to direct precipita-
tion and the steep sideslopes of glaciated valleys are left unbuttressed by ice.24

The frequency and intensity of extreme precipitation events are projected to increase across the region.7,8,25 
Long, narrow bands of atmospheric water vapor transport, commonly known as atmospheric rivers (ARs), 
are associated with extreme precipitation in the western United States, where they contribute an average 
of 30%–45% of total winter precipitation (Figure 27.1).26,27,28 ARs can cause severe damages,29 such as the 
widespread damage resulting from ARs witnessed in western Washington in November 2021 (KM 27.4). 
A greater number of strong AR events and fewer moderate and weak events are projected to occur,30 
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although the changes in the frequency of landfalling ARs vary across climate models.31,32 While the average 
contribution of ARs to annual precipitation in coastal areas is 50% or greater,33 ARs are projected to reach 
farther inland.34,35,36,37,38 Understanding how climate change affects ARs is critical to estimating how the 
region’s water supply will change (KM 27.4).

Atmospheric Rivers and Extreme Precipitation in the Northwest 

Extreme precipitation days are closely associated with atmospheric rivers, which are projected to be more fre-
quent and intense and to reach farther inland.

Figure 27.1. (top) Satellite imagery shows the total precipitable water vapor on February 6, 2020. Red areas indi-
cate more precipitable water vapor, which appears in a narrow band known as an atmospheric river (AR) directed 
toward the Northwest. (bottom) ARs are closely associated with extreme precipitation events and vary across 
meteorological seasons, as seen by the percentage of extreme precipitation events during 1981–2016 associat-
ed with ARs: winter (December–February), spring (March–May), summer (June–August), and fall (September–
November). Fall and winter months have a higher percentage of extreme precipitation days associated with ARs, 
particularly in coastal regions and regions west of the Cascades. (top) Satellite image: Joshua Stevens, NASA 
Earth Observatory; (bottom) adapted with permission from Slinskey et al. 2020.27 ©American Meteorological 
Society. 
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Seasonal coastal upwelling causes nearshore sea surface temperatures off the Washington and Oregon 
coasts to be cooler than offshore surface temperatures, tracking temperature trends in the slower-warming 
deep water.39 Nonetheless, annual average coastal sea surface temperatures in the Northwest have warmed 
approximately 1.2°F since 1900, and the northern California Current is projected to warm by an additional 
4.6°–7.3°F by the end of the century under a very high scenario (RCP8.5), affecting marine species in a 
variety of ways (KM 27.2).39,40,41,42 Human-caused carbon emissions have already driven ocean acidification of 
surface and subsurface waters off Oregon and Washington.43 Synergies among ocean acidification, hypoxia, 
and human-caused nutrient inputs negatively affect many species, with cascading effects on food webs and 
human communities (KMs 27.2, 27.6).44,45,46 

Two recent periods of widespread and persistent high sea surface temperatures in 2014–2016 and in 2019, 
known as marine heatwaves (and informally as the “Blob” and “Blob 2.0”), temporarily increased onshore 
temperatures by up to 11°F above regional averages,47 resulting in short-term shifts in species distributions 
and mortality of many seabirds48 and marine mammals (KMs 10.1, 27.2).49 These heatwaves increased the 
toxicity of harmful algal blooms to marine mammals and humans who consume crabs and other shellfish 
(KM 27.6).50,51,52,53,54 

Sea level is projected to increase across the Northwest under all scenarios (App. 3.3).55 Net sea level changes 
vary by location in response to rising sea levels and vertical land motion, which is the long-term change in 
land surface elevation from processes such as tectonic forces (Table 27.1).56 Sea levels are further affected 
by climate cycles, such as El Niño, which can raise sea levels up to another 7.9 inches for several months. 
Relative to the 1991–2009 average, relative sea levels in the Northwest are projected to rise 0.6 to 1.0 feet 
by 2050 for the Intermediate and High scenarios, respectively (Table 27.1),55 placing physical structures and 
communities at risk (KMs 27.1, 27.4).57 In Puget Sound, where most land is subsiding, sea levels are expected 
to rise 0.9 to 1.6 feet by 2050 and 3.2 to 10.2 feet by 2150 under a very high scenario (RCP8.5), relative to the 
reference period. On Washington’s outer coast, sea level rise is anticipated to range from 0.1 to 0.8 feet by 
2050 in Neah Bay, where land is rising, and 0.5 to 1.2 feet by 2050 in Tahola, where land is subsiding, under a 
very high scenario (RCP8.5).58

Table 27.1 Sea Level Rise Projections for the Northwest

Sea level rise is projected to increase across the Northwest under all sea level rise scenarios. This table illustrates the vari-
ability of sea level rise projections for 2050, 2100, and 2150 across the Northwest under the Intermediate and High sea level 
scenarios55 and for specific locations under comparable scenarios (50% likelihood of exceedance and 1% likelihood of exceed-
ance, respectively) for downscaled sea level rise projections for Washington State under a very high scenario (RCP8.5).58 The 
changes are increases in feet, relative to the 1991–2009 average. See Appendix 3 for associated information on scenarios. 

Location 2050 2100 2150

Northwest Region 0.60–1.03 2.64–5.98 5.40–10.86

Tacoma, WA 0.9–1.6 2.5–5.3 4.2–10.7

Neah Bay, WA 0.1–0.8 1.0–3.8 1.8–8.4

Tahola, WA 0.5–1.2 1.7–4.5 3.0–9.5 
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Key Message 27.1  
Frontline Communities Are Overburdened, 
and Prioritizing Social Equity Advances Regional Resilience

Ongoing systemic oppression disproportionately exposes frontline communities in the 
Northwest—including low-income urban communities of color; rural and natural resource–
dependent communities; and Tribes and Indigenous communities—to the consequences of 
extreme heat, flooding, and wildfire smoke and other climate hazards (very high confidence). 
Frontline communities often have fewer resources to cope with and adapt to climate change 
but have been leaders in developing climate solutions within and outside their communities 
(high confidence). Actions to limit and adapt to climate change that prioritize climate justice 
and redirect investments to frontline communities can advance regional resilience (medium 
confidence). 

In the Northwest, a history of disenfranchisement and systemic neglect of specific populations has 
influenced their geographic and occupational exposure to climate-related hazards.59,60 Long-lasting 
effects of settler colonialism, racially restrictive covenants, and exclusionary laws have pushed Indigenous 
communities, communities of color, and low-income communities into areas that are more vulnerable to 
climate change.59,61,62 

Additionally, economic, political, and social systems play critical roles in distributing the costs and benefits 
of climate action (KM 20.3), limiting frontline communities’ socioeconomic mobility and, thus, their capacity 
to adapt. As a result, these communities not only experience disproportionate climate burden but also have 
the fewest resources with which to respond and adapt to climate change.59

While many types of frontline communities exist—such as unhoused individuals, young children, older 
adults, and people with preexisting health conditions—this section highlights three communities: 
low-income urban communities of color, rural and natural resource–dependent communities, and Tribes 
and Indigenous communities.

Low-Income Urban Communities of Color 
Redlining, restrictive housing covenants, and other historical policies have reinforced racial and economic 
discrimination and exacerbated inequitable exposure to contemporary climate impacts (KM 20.3).63 
Formerly redlined communities in Portland, Tacoma, Seattle, and Spokane are still economically and racially 
segregated and continue to be deprived of equitable access to environmental amenities that protect against 
the consequences of climate change.64,65,66 Formerly redlined areas can be up to 13°F warmer than the city’s 
average surface temperature (KM 27.4), intensifying some impacts for residents such as heat exhaustion 
(Figure 27.2).67,68 Incidences of heat-related illness and death are on the rise and are expected to increase as 
the climate changes.69 Extreme heat poses the most consequential health risks for older adults, low-income 
households, outdoor laborers such as agricultural workers and construction workers, people who are 
unhoused, and others who have limited access to adaptive resources such as affordable cooling options 
(KM 27.5).

Previously redlined communities also have reduced diversity of plant and animal species due to land-use 
decisions that facilitated industrialization, reduced tree cover, and increased the severity of the urban heat 
island effect.68,70,71 Furthermore, the same factors contributing to urban heat islands—a higher proportion 
of water-impervious surfaces and lack of green spaces—also increase the chances of urban flooding during 
extreme precipitation events.72,73
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Redlining and Extreme Heat in Portland, Oregon

Economically and racially segregated urban communities are inequitably exposed to climate change impacts, 
including extreme heat.

Figure 27.2. The map shows satellite-derived land surface temperature (in °F) for July 14, 2017. Areas in Portland, 
Oregon, that were historically redlined—that is, areas that received Home Owners’ Loan Corporation (HOLC) grades 
of D, or “hazardous”—experience more intense heat island effects than areas that received HOLC grades of A or B. 
Residents are disproportionately exposed to extreme heat in these areas, where surface temperatures are up to 13°F 
warmer than the city’s average surface temperatures.68 Figure credit: Portland State University and NOAA NCEI. 
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Rural and Natural Resource–Dependent Communities 
Many rural communities depend on natural resources and therefore are particularly vulnerable to climate 
change (KM 27.3).74 Workers in natural resource and outdoor-based industries will experience heightened 
exposure to heatwaves and wildfire smoke,75,76 and outdoor construction workers face higher rates of 
traumatic injuries when exposed to extreme heat.77 Washington and Oregon have high numbers of agricul-
tural workers, especially Latino migrant workers, many of whom live in areas with low community resilience 
to climate-related hazards. 

Structural inequities limit low-income, migrant, and agricultural workers’ access to clean air and drinking 
water, adequate living conditions, healthcare, and other social services, compromising their ability to adapt 
to climate-related risks.78 As natural resource economies adapt, shifts in the seasonal availability of work and 
the diversification of local economies yield both positive and negative outcomes, including new economic 
opportunities, improved equitable occupational health and safety policies, and job security for outdoor 
workers and rural communities.79,80,81 Weather- and climate-service providers supply these communities 
with tools and resources—such as communication materials or user-friendly models—to help them be more 
resilient.82,83,84 Effective climate services that are inclusive of diverse perspectives and communities that also 
contextualize extreme weather events within long-term climate changes can reduce maladaptation and 
improve community resilience to climate change.3,74,85,86,87 

Tribes and Indigenous Communities
Tribes and Indigenous communities experience disproportionate climate impacts and systemic barriers 
that limit their ability to adapt to climate change (KM 16.1).88,89 Due to historical policies of land allotment, 
many landscapes have heterogeneous management across Tribal and non-Tribal jurisdictions, which can 
amplify wildfire or flooding risk to Tribal structures and limit the adaptation options for Tribal members. 
These policies complicate the ability of Tribes to access structures and spiritual locations during or after 
climate-related events.90,91 For example, some coastal Tribes, such as the Quinault Indian Nation, are 
adapting to coastal flooding by reacquiring fractionated land to relocate housing and key facilities.92 Even 
when Tribes manage contiguous areas of lands, limited access to funding, among other challenges, hinders 
planned or community-led relocation efforts (KM 9.3).92,93 

Climate change also affects cultural and traditional foods and other resources, leaving Tribes without 
traditional sustenance and medicines for religious or ceremonial purposes (KM 27.6).94,95 Climate change can 
shift resources outside usual and accustomed areas into adjacent non-Tribal jurisdictions or cause phe-
nological shifts that affect cultural harvesting practices.95 For example, shifts are expected in huckleberry 
habitat and the timing of huckleberry flowering and fruit ripening, affecting Tribes who rely on huckleber-
ries for cultural and economic uses.96 

Climate Action and Social Equity
Climate solutions designed without input from frontline communities can result in maladaptation, 
increasing vulnerability and cost burden.97,98 For example, measures to lessen the impacts of extreme 
heat, like green infrastructure, have increased real estate values in cities such as Portland and Seattle, a 
phenomenon known as green gentrification.59,99,100 As utilities transfer the costs related to extreme events 
and the transition to renewable energy directly to consumers, utility bills are expected to become unafford-
able for low-income households.101 Inequitable adaptation exacerbates displacement risks for low-income 
urban populations and can lead to cascading development pressures in rural areas (KM 27.6).102,103,104 The 
rising cost of living, alongside socioeconomic disparities, limits temporary relief and long-term recovery 
options for those who are affected by climate-intensified extreme weather events, such as the 2021 heat 
dome event.
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In response to grassroots advocacy and community-led efforts, state and local climate policies in the 
Northwest are increasingly recognizing the importance of climate justice. These policies are prioritiz-
ing strategies such as subsidizing adaptation, redistributing benefits, and reducing harm to frontline 
communities.105,106 Despite facing disproportionate risks from climate change impacts, frontline communities 
have emerged as leaders in climate action, elevating policies that center social equity and confer resilience 
to communities across the region.97 

Key Message 27.2  
Ecosystems Are Transitioning in Response to  
Extreme Events and Human Activity

Ecosystems are expected to change as the climate continues to change and as the magnitude 
and frequency of extreme events increases (very high confidence). Some historical and 
ongoing human activities reduce ecosystem resilience and the adaptive capacity of species 
(very high confidence). These human activities are expected to exacerbate many effects of 
climate change (very high confidence). Human efforts to enable ecological adaptation founded 
in ecological theory are expected to improve ecosystem functions and services and reduce 
exposure to climate-related hazards (medium confidence).

Ecological Effects of Climate Trends and Extreme Events 
Long-term changes in climate and the frequency and magnitude of extreme events, such as droughts, 
floods, and heatwaves, affect species and ecological processes (Figure 27.3).107,108,109,110 High temperature 
records set in the Northwest from 2015 through 2021 were associated with many short-term or long-term 
ecological transformations, such as mortality or physiological damage to numerous native species of plants 
and animals, changes in water availability, and wildfire dynamics. Ecological effects and responses to climate 
change are not uniform, even among closely related species.111,112
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Impacts of Climate-Related Extreme Events on Northwest Ecosystems

Long-term climate changes and extreme events threaten Northwest ecosystems.

Figure 27.3. (top) Flooding on November 16, 2021, in the Nooksack River is shown. Flooding is expected 
to become more frequent and severe as a result of more intense rainfall and rain-on-snow events. (middle 
left) Non-native invasives such as the European green crab (Carcinus maenas) disrupt food webs as their 
distribution expands with warming coastal waters. (middle center) Postfire debris flows are expected to 
become more common with increased wildfire and precipitation intensity. (middle right) Large areas across 
the Northwest—such as in Idaho—are prone to increased risk of wildfires. (bottom left) Aspen is sensitive to 
high air temperature, leading to more dying aspen groves. (bottom center) Increases in the distribution and 
density of non-native invasive grasses, such as cheatgrass (Bromus tectorum), exacerbate wildfire risk. (bottom 
right) Seedlings are more sensitive than mature trees to heat stress and drought. Satellite image: (top) Lauren 
Dauphin and Joshua Stevens, NASA Earth Observatory. Photo credits: (middle left) ©Emily Grason; (middle 
center, middle right, bottom left) ©Charlie Luce; (bottom center) ©Erica Fleishman; and (bottom right) Colorado 
State Forest Service.
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Terrestrial Ecosystems
People in the Northwest rely on forests for diverse goods, services, and cultural purposes (KMs 7.2, 27.2). 
Warming temperatures and decreased summer precipitation over the past four decades have contributed 
to increases in the size and maximum elevation of wildfires in Northwest forests, and those trends are 
expected to continue.113,114,115 Because concurrent heat and drought are becoming more common,116 the 
volume of stressed or dead vegetation is increasing, which is increasing fuel load and wildfire risk. Across 
the western United States, many previously burned forests are reburning.117 Some low-elevation and dry 
areas are converting from forest to shrubland after wildfires, and these transitions are expected to continue 
in the Northwest.118,119 

In arid woodlands and shrublands throughout the Northwest, the distribution and abundance of non-native 
and highly flammable cheatgrass (Bromus tectorum) continue to increase before and after wildfires.120,121 
Cheatgrass establishment is associated with relatively high precipitation during autumn and spring120 and 
with ground disturbance from wildfire, livestock grazing, and other types of land uses.121,122 Changes in 
human activities such as recreation, development, transportation routing, and energy transmission will 
also continue to affect wildfire frequency (KM 27.4).104 The length of the wildfire season and the potential 
for human-caused ignitions in all Northwest ecosystems are expected to increase as drought frequency, 
duration, and intensity increase.123

Climate change can affect the distribution and population dynamics of native and non-native species. When 
some non-native species become effective competitors with native and other non-native species, they 
are considered to be invasive in natural and human-dominated systems, including forests used for timber 
harvest or recreation. Some of these invasive species are expected to become more prevalent in response to 
projected increases in temperature, especially minimum winter temperature, and increases in the frequency, 
duration, and severity of drought across the Northwest.117,124 

Additionally, some insects in the Northwest that harm or kill conifers are native herbivores that are prone to 
outbreaks. For example, densities of native mountain pine beetles (Dendroctonus ponderosae) generally are 
low, but outbreaks can result in 60% stand-level mortality over vast forest areas.125 The Douglas-fir beetle 
(Dendroctonus pseudotsugae), another insect native to the Northwest, can damage both stressed and healthy 
Douglas firs (Pseudotsuga menziesii). The effects of outbreaks on trees generally are greatest during hot, dry 
summers when trees may be water-stressed.126 Additionally, warm winters may decrease beetle mortality, 
increasing the likelihood of an eruption.126,127

Aquatic Ecosystems 
Hydrological and thermal changes will prompt shifts in species composition of native and non-native fishes, 
especially where their habitats have been impaired by land use, including stream modifications and water 
withdrawals.128,129,130,131 For example, rising temperatures, disease spread, and competition threaten the native 
bull trout (Salvelinus confluentus) and cutthroat trout (Oncorhynchus clarkii).132 Non-native invasive species 
such as smallmouth bass (Micropterus dolomieu), which thrive in warmer waters, continue to expand in the 
Columbia River basin, competing with and consuming native salmonids.133,134 Increased intensity of precipita-
tion and occurrence of rain-on-snow events will increase flood severity and frequency, endangering salmon 
eggs and juveniles.135,136,137,138,139

Increases in wildfire size and intensity are expected to lead to local extinctions of resident fishes,140 warmer 
stream temperatures,141 and increased sediment transport, turbidity, and fine sediments in streambeds.142,143 
Habitat connectivity can ameliorate local extinctions following wildfire and postfire debris flows, although 
local extinction can be permanent if habitat patches are small and are isolated by temperature or 
road culverts.144
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Coastal and Marine Ecosystems
The 2014–2016 marine heatwave had numerous effects in the highly productive California Current marine 
ecosystem,145,146,147 including the first documented domoic acid poisoning of sea lions, with detectable levels 
of domoic acid in dolphins, whales, and seals off the Washington coast.148 These toxins are now detectable 
year-round in sea lions, not just during algal blooms.149 Changes in the ecosystem during the heatwave also 
caused mass mortality of seabirds, such as Cassin’s auklets (Ptychoramphus aleuticus)48 and common murres 
(Uria aalge)150 and led to extensive closures of crab and shellfish fisheries.54 Many salmon populations also 
contracted sharply after the heatwave.151 Preliminary evidence indicates that, following extreme heat in June 
2021, numerous shellfish species became thermally stressed or died.152 The frequency and intensity of marine 
heatwaves are expected to increase.153 These marine heatwaves are expected to have broad-ranging impacts 
on marine ecosystems154 and increase the incidence of human–wildlife conflict, such as entanglement of 
whales in fishing gear.155 While the impacts of future marine heatwaves on species will vary—some species 
will decline, others will increase, and others will shift their distributions—current regulations and practices 
may not adequately respond to these impacts, potentially leading to disruptions in fisheries (KM 27.3).145

Salmon abundance, age at maturation, and size at maturity are widely correlated with climate trends (Figure 
27.4).156,157,158,159 Idaho’s Snake River spring and summer Chinook and sockeye salmon are at particularly high 
risk across multiple future temperature scenarios (Box 27.1).160,161,162,163,164,165 Increasing temperatures are 
expected to increase the duration and spatial extent of enabling conditions for harmful algal blooms,166,167 
increasing threats to marine mammals, fish, and shellfish. Population instability increases volatility in 
fisheries and the extinction risk for species that are already at low abundance.168,169
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Interacting Stressors Affecting Salmon Resilience

Stressors stemming from interactions between human activities and natural systems affect freshwater and 
marine ecosystems and reduce salmon resilience to climate change.

Figure 27.4. Human activities and climate change alter the physical environment in concert, often amplifying their 
impacts through cumulative effects over the salmon life cycle. They also directly and indirectly alter freshwater 
and marine systems. Natural systems respond to changes in their environment through both evolutionary and 
ecological processes. The sum of these many different processes has led to declines in many populations of 
salmon over decades and reduced their ability to cope with future climate change. Figure credit: NOAA Fisheries.
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Box 27.1. Snake River Sockeye Salmon 

Snake River sockeye salmon, an important species for the region, is highly vulnerable to climate change.161,170,171,172 Appli-
cation of conservation genetics and interagency and Tribal cooperation173,174 have sustained this culturally and ecologically 
unique population. 

Over 150 years, a variety of human activities have affected Idaho sockeye. For example, overfishing, construction of dams 
that blocked migration for periods of time, and stocking of non-native fish populations altered aquatic ecological process-
es in complex ways.175 Numerous factors contributed to sockeye declines until almost no fish returned from the ocean in 
the 1990s. All 16 adults known to have returned during that decade were captured and taken into a breeding program.176,177 
Subsequently, a collaboration among federal, state, and Tribal biologists increased reproduction of the captive fish, 
allowing the release of smolts and some adults to the wild to spawn. In 2014, a peak of 1,579 sockeye salmon returned to 
Idaho’s Sawtooth Mountains.151

In July 2015, a record-breaking heatwave combined with low snowpack from the previous winter led to high water 
temperatures that killed nearly all naturally migrating adults, highlighting the vulnerability of this life stage in sockeye 
salmon.161,178,179 To protect genetic diversity in hot years and maximize reproductive capacity, adults have been collected 
at dams and transported upriver nearly 500 miles. By the 2040s, temperatures in the free-flowing Salmon River, which 
travels 425 miles in central and eastern Idaho, could rise several degrees more than larger rivers downstream under SRES 
A1B and B1 scenarios (similar to intermediate and high scenarios). The Salmon River could lose nearly half its stream-
flow during the adult migration window, threatening this endangered species.161 Extensive water withdrawals and habitat 
modifications in the Salmon River basin171,180,181 exacerbate these conditions. Nevertheless, the quality of juvenile rearing 
habitat182 and marine survival174 are relatively high in this population, and reintroduction programs are widely supported.183 
Additional actions to restore cool, clean water throughout the basin would support the population’s natural adaptation to 
climate change.181,184,185

Ability of Ecosystems and Species to Adapt to Climate Change 
Historic and contemporary land use interacts with climate change to affect species’ adaptive capacity—their 
genetic, physical, and behavioral ability to respond to environmental change.186,187 Many different strategies 
to adapt and build resilience within Northwest ecosystems include ecological protection and management, 
assisted migration, market-based mechanisms, and conservation of genetic diversity.188,189,190 

Protection and restoration of natural water bodies and processes that maintain water availability and quality 
can offset some effects of land use, including the growing demand for irrigation that reduces streamflow 
and freshwater habitat quality.16 Similarly, modification of natural or built flood-control structures can 
reduce adverse downstream effects of changes in hydrology, sedimentation, and shoreline erosion and 
improve water quality and capacity for groundwater drainage in agricultural systems.191 These efforts can 
lead to cascading benefits for habitats, supporting salmonids, other fishes, shellfish, and shorebirds.192,193

Restoration of floodplains that provide habitat for salmon194 also benefits humans by reducing the current 
and future exposure of agriculture and infrastructure to flooding from the combined effects of higher 
sea levels, storm surge, and stream runoff.195,196 As several dams and other barriers to historical spawning 
areas have been removed in recent decades, fishes have rapidly recolonized newly accessible habitat in 
some cases.197,198,199,200

Reintroduction of fire and thinning of non-fire-resistant vegetation reduce wildfire severity and risk in 
some Northwest forests and woodlands, especially dry forest types where vegetation has accumulated due 
to past fire exclusion policies.201,202 These forest management practices also have the potential to reduce 
drought-related mortality.203 Burning and forest thinning may not decrease wildfire severity and risks in wet 
or cold forest types204,205 but can increase plant and animal diversity.
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Wetlands offer some protection against extreme weather events.206 Wetland mitigation banks create or 
enhance wetlands in a given location as compensation for loss or degradation of other wetlands. The 
number of these banks has increased across the region,207 but long-term evaluations of created wetlands208 
or the effectiveness of wetland mitigation banks209 are uncommon. Market-based approaches, such as 
temporary water-right leases or permanent transfers, have the potential to support ecosystem functions, 
such as instream flow augmentation for fish health, with payments to users of competing resources.210 
However, market and political bottlenecks affect the efficacy of these approaches.211

The ability of species to adapt to climate change is varied, and the likelihood of adaptation depends in 
part on the amount of genetic variation in a population or species, which is often related to the number of 
individuals and their relatedness.188 Evolutionary responses to recent climate change have generally been 
less than what might be expected, and these constraints are not fully understood.212,213 The feasibility of 
quantifying abundance, relatedness, and genetic variation varies among populations and species, and these 
measures have not been estimated for many populations and species. 

Key Message 27.3  
Impacts to Regional Economies Have  
Cascading Effects on Livelihoods and Well-Being

Climate change impacts to the Northwest’s natural resource- and outdoor-dependent 
economies will be variable, given the diversity of industries, land cover, and climatic zones 
(very high confidence). Impacts to these industries will have cascading effects on community 
livelihoods and well-being (high confidence). While some industries and resource-dependent 
communities are resilient to climate-related stresses, economic responses to climate change 
can benefit affected industries, workers, and livelihoods (medium confidence). 

Agricultural Industries and Livelihoods 
The Northwest encompasses 138.8 million acres of public and private cropland, grassland, pasture, 
rangeland, and forests,214 and agricultural production totaled $6.28 billion in 2021 (in 2021 dollars).215 The 
agricultural economy includes farms and ranches that have been in operation for multiple generations and is 
dependent on a seasonal migrant workforce, mostly from Mexico and Central America (KM 27.1).

Climate change affects crop production quantity and quality, and multiple competing effects depend on 
crop and region, causing increases and decreases in projected yields (Box 27.2; KM 11.1).216 Chill accumu-
lation—exposure to cold temperatures during dormancy—is key for fruit set and fruit quality in perennial 
crops and is expected to decrease in the southern parts of the Northwest and increase in the northern 
parts.217 Increased exposure to extreme temperatures can induce cosmetic effects (e.g., sunburn in apples) 
that make crops increasingly unmarketable.218 Pest pressures are expected to increase due to climate 
change; however, preliminary research indicates that the efficacy of non-chemical control of pests can also 
increase, providing opportunities for reduced pesticide use and environmental benefits.217 Warmer autumns 
have been linked to potential increased risk of honeybee (Apis mellifera) colony failure in the following 
spring even in the absence of other stressors,219,220 thereby affecting the specialty crop industry that relies 
on managed honeybees. While increasing temperatures in some regions may present new economic oppor-
tunities, such as winegrape growing in Puget Sound,221 other climate-related impacts such as wildfire smoke 
may impede these emerging industries.222
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Drought conditions have also affected the region’s agricultural lands and rangelands. Across the region, the 
2021 drought resulted in reduced access to irrigation water and yield loss for several crops.223 Significant 
yield declines between 2020 and 2021 in winter wheat, spring wheat, and barley were also attributed to 
drought.224 Droughts have also decreased forage availability and productivity, affecting livestock operations 
and management of habitat for other species.225 Market approaches such as temporary leasing of water 
can alleviate drought impacts on agricultural productivity and the regional economy to a certain extent.226 
Similarly, grass banks, which allow landowners to lease forage space for ranchers in exchange for implemen-
tation of conservation projects by ranchers, can allow ranchers to better manage forage shortages caused by 
drought and are gaining popularity in the western United States.227,228

Increasing trends in crop insurance loss payments—an indicator associated with economic disruption of 
agricultural production due to extreme events and impacts—reflect the region’s warming temperatures and 
declining snowpack (Figure 27.5).229,230 Agricultural producer perceptions of climate risk affect the efficacy of 
place-based adaptation and resilience efforts, and operations that adapt to extreme weather and changing 
climate conditions may see improved productivity and resilience (KMs 6.1, 27.1).3,82,83,87,231 

Agricultural Losses Through Crop Insurance Indemnity Payments

Increasing trends in crop insurance loss payments reflect the economic disruption of agricultural production 
due to extreme events including droughts.

Figure 27.5. These county-level maps compare all crop insurance indemnity payments from the US Department of 
Agriculture Risk Management Agency (left) with those specifically due to drought, from 2006 through 2020 (right). 
All indemnity payments reflect both biophysical and socioeconomic impacts from weather- and climate-driven 
events, including major droughts, on important commodities such as wheat and potatoes. Figure credit: USDA. 
See figure metadata for additional contributors. 

Forest Industries and Livelihoods 
Northwest forests provide multiple ecosystem and economic services. Rising temperatures and 
increased frequency of ecological disturbances may affect forest structure and growth (KM 27.2),232 
leading to reductions in the quantity and quality of forest products and commercially important timber 
species.233,234,235,236 For example, these impacts could lead to the increase in density and distribution of 
ponderosa pine at higher elevations in the Blue Mountains ecoregion and the expansion of western Cascade 
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Range Douglas fir into higher elevations, affecting timber supply and carbon sequestration potential.234,237,238 
Dry coniferous forests and woodlands in lower to middle elevations—such as those on the east side of the 
Cascade Range, the Palouse Prairie–forest ecotone in Idaho, and drier areas of the Rocky Mountains—
will experience large increases in wildfire frequency, extent, and severity, threatening forest and timber 
management initiatives.117,239,240

Climate impacts to forest industries will affect the livelihoods of communities dependent on timber and 
non-timber forest products.234,237 While rural timber-based economies face additional economic risks from 
wildfires and drought, they also have local knowledge and insight to effectively reduce some of these risks 
(KM 27.1).241 Despite this, climate impacts to forest product industries can lead to economic depression 
within some communities, resulting in migration away from these communities (KM 27.6).241 However, 
localized species shifts could induce industries and private landowners to make new financially beneficial 
adaptation choices.235,242 Other emerging opportunities, such as cross-laminated timber, can support local 
timber economies while providing sustainable and less carbon-intensive alternatives for construction.243

Reforestation and afforestation are expected to benefit ecosystem functions, such as increasing water 
quality, long-term carbon storage capacity, and viability of some native species (KM 7.2).244 Tribal forest 
enterprises use harvest and conservation techniques reliant on Indigenous value systems to support 
improved forest management.245 For example, the Confederated Tribes of the Colville Reservation are 
employing innovative drone technologies to conduct forest inventories, enabling them to improve their 
forest and timber management efforts, air and water quality, wildlife habitat, preservation of cultural areas 
and practices, and carbon sequestration potential.246

Commercial Fisheries and Livelihoods
Climate change has affected fisheries in the Northwest (KMs 27.2, 10.2). Marine heatwaves and harmful algal 
blooms have led to climate-induced fishery losses on the West Coast, accounting for a $641.1 million (in 
2022 dollars) reduction in commercial fishing revenue.247 Climate change can also intensify stressors such 
as decreasing catch and landing rates and accelerating the graying of the fleet phenomenon—the increasing 
average age of commercial fishers.248,249 Fishery losses and closures can affect fishing-adjacent industries, 
such as hospitality, and the cultural identity of residents who directly or indirectly rely on fishing.250

Tribes account for over half of federal fishery loss requests.247 Further population declines, especially of 
Pacific salmon, will have additional consequences for Tribal communities reliant on fish for subsistence, 
ceremonies, and health.95,251 Ocean acidification, hypoxia events, and algal blooms are also hurting Tribal 
Dungeness crab fisheries.252 It is not always feasible for Tribes to secure loans and equipment and to thrive 
in competitive market systems. However, many Tribes are utilizing Indigenous approaches and Tribal–
federal partnerships to increase the resilience of their commercial and subsistence fisheries.253 

Tourism, Recreation, and Customer Service Industries
The outdoor tourism and recreation industry in the Northwest supports $51.9 billion (in 2022 dollars) in 
annual expenditures and employs more than 588,000 individuals.254 The economic impacts of climate 
change on the recreation industry will vary.79 The snow season is projected to decrease by nearly half 
by the end of the century in parts of the Cascade Range.255 Snow-based recreational industries such as 
skiing have already lost revenue due to the decrease in snow days, and future impacts to snowpack are 
expected to further harm snow-based recreational industries.256,257 In contrast, earlier spring snowmelt and 
increasing temperatures can increase access to hiking trails and campgrounds, thereby extending these 
seasons. However, a regional shift from a snow- to a rain-dominated system (KM 27.6)16,258 may present new 
operational and maintenance challenges from increased flooding and erosion.259 Recently burned areas 
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typically are closed as a safety precaution, and poor air quality from wildfire smoke can deter outdoor 
activities and recreation.79,260

Higher temperatures may increase the demand for water-based and warm-weather activities such as 
boating, cycling, and fishing (KM 27.6).79,261 For example, economic gains for cycling activities in Washington 
are expected to increase due to the declining numbers of cold days.262 However, climate change can 
reduce the quality and aesthetics of recreational sites, affecting user preference and leading to reduced 
visitation rates.79

Changes in recreation management may produce inequitable outcomes. Rising costs to access recreation 
sites and limited ability to travel to alternative destinations will disproportionately affect low-income 
visitors. Increased cost of living in high-amenity areas such as ski resort towns will also stress workers and 
adjacent communities (KM 27.6).263 Outdoor activities such as skiing and hiking can improve overall health 
and thereby reduce healthcare costs; however, decreased access to such activities can lead to increased risk 
of chronic diseases, mental health impacts, and loss of cultural heritage and connection to place (KM 27.6).264

Box 27.2. Tribal Agricultural Economies Are Adapting to Climate Change

Northwest Tribal economies are diverse, and many are affected by climate change. Tribes are utilizing innovative ap-
proaches that braid Indigenous and Western sciences together to respond to these challenges. 

Climate change is affecting Tribal agriculture.265 The Nez Perce Tribe is currently working with non-Tribal managers to pilot 
regenerative agricultural practices that integrate Traditional Ecological Knowledge to improve economic, ecological, and 
cultural resilience.266 The Yakama Nation is reacquiring agricultural lands to promote food sovereignty and to train the next 
generation’s Tribal members in sustainable and regenerative farming.267,268 

Just Transition and Community Livelihoods 
As local economies in the Northwest shift to low-carbon industries and climate-adaptive practices, histor-
ically overburdened workers will face higher exposure to climate-related hazards as well as risks of being 
excluded from economic shifts to a green economy (KM 27.1).76,97,269 Local governments, Tribes, labor unions, 
and community groups across the region are evaluating and adopting policies and programs that support 
a just transition (KM 20.3).97 Efforts toward a just transition in the Northwest region include investments 
in low-carbon sectors, local economic diversification plans, training and skills development for workers in 
resource-dependent and fossil fuel–dependent industries, financial assistance for impacted communities, 
and worker protections.270,271 Despite progress in specific sectors, efforts that account for historically 
overburdened workers can reduce potential livelihood disruptions caused by economic shifts associated 
with decarbonization.97,272
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Key Message 27.4  
Infrastructure Systems Are Stressed by Climate Change  
but Can Enable Mitigation and Adaptation

Recent extreme events have stressed water systems and housing, transportation, and energy 
infrastructure across the Northwest (very high confidence). Extreme precipitation, droughts, 
and heatwaves will intensify due to climate change and continue to threaten these interrelated 
systems (very high confidence). Given the complexity of and interdependencies among infra-
structure systems, an impact or a response within one sector can cascade to other sectors 
(very high confidence). Cross-sectoral planning, which can include redesigning aging infra-
structure and incorporating climate considerations into land-use decisions, can increase resil-
ience to future climate variability and extremes (high confidence).

Infrastructure systems are threatened by extreme events such as drought, wildfire, heatwaves, floods, and 
landslides (KM 12.2).273 Climate change has revealed vulnerabilities in infrastructure planning and design, 
which are typically based on historical conditions and do not account for recent increases in the frequency 
or severity of extreme events. Isolated communities and those without alternatives if infrastructure fails are 
among the most vulnerable. Designing resilient infrastructure requires accounting for interdependencies 
among the built environment’s physical and social elements.274,275,276

Water Infrastructure
Droughts in the last decade in the Northwest demonstrated water supply vulnerabilities, such as depletion 
of reservoirs across central and eastern Oregon and southern Idaho.277,278 Some water sources, infrastruc-
ture, and operations that treat and convey water were resilient during these droughts. However, some 
water providers were forced to access alternative sources, institute mandatory or voluntary conservation 
measures, or otherwise modify their operations. Small rural water providers are vulnerable because they 
usually depend on a single water source or sources with limited capacity and because operators generally 
have limited resources for planning, upgrades, and emergency response (KM 27.1). Wildfires in 2020 and 2021 
damaged physical elements of the water delivery and treatment systems, disrupted electricity systems, and 
increased the amount of sediment in waterways and reservoirs.142,279 These vulnerabilities will increase as 
droughts and wildfires become more frequent and severe.

About 30% of Northwest households use septic systems to treat their wastewater.280 Sea level rise, high 
temperatures, extreme precipitation, and high streamflows reduce the function of septic systems.281,282 For 
example, saturated soils impede wastewater treatment in drainfields.283 Failures of wastewater storage and 
treatment will negatively affect human health and increase nitrogen loads in waterways.284

Emerging data and technologies can make drinking water and stormwater systems more resilient to 
climate change. For example, projections of changes in storm duration, intensity, and frequency285 provide 
information needed to upgrade stormwater systems to reduce stresses from extreme precipitation.286,287 
Water utilities can reduce water losses during delivery and alleviate stress to the system during hotter 
summers and more severe droughts by upgrading distribution lines and minimizing water losses during 
treatment.288 Water-efficient appliances, sprinklers with soil moisture sensors, drought resilient plants, and 
conservation education and incentives can also reduce water demand.288
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Energy Infrastructure
Climate change impacts nearly every aspect of the energy system, with interdependencies and cascading 
effects in other critical sectors (KMs 5.1, 12.2, 31.1; Focus on Compound Events). For instance, less snow, 
earlier snowmelt, and more frequent and intense droughts will alter the seasonal capacity of hydropower, a 
primary source of regional energy, to meet electricity demand.278,289,290,291 Earlier snowmelt is also increasing 
the need for water storage in Idaho reservoirs.11 Removal of dams may support salmon recovery but can 
reduce resilience in the regional power system (Box 27.1).292 

Increasing temperatures and heatwaves are shifting the seasonal timing and spatial footprint of electricity 
demand.291,293 Cooling degree days, a metric associated with energy demand for cooling, are increasing 
across the Northwest, and the region’s population increases will also affect the electricity demand, 
potentially leading to energy shortfalls (Figure 27.6).294 Population growth and droughts are expected to 
amplify competing claims to the water supply by irrigators, Tribes, power plants, and other water rights 
holders,295,296 highlighting the interdependencies of energy, water, and agricultural systems. Strategies such 
as demand-side management (voluntarily shifts in power loads) and ongoing additions of solar power, such 
as that being pursued by the Nez Perce Tribe,297 can increase the resilience of energy infrastructure.

Annual Cooling Degree Days Relative to Annual Hydropower Generation 

Hydropower generation is currently meeting the number of cooling degree days but might not continue to do so 
as temperatures and heatwaves increase in the future.

Figure 27.6. Cooling degree days—the annual cumulative number of days on which the average temperature 
is greater than 65°F—are typically used to measure cooling energy demand. During 1990–2020, the annual 
number of cooling degree days (orange lines) increased, whereas annual hydropower generation (in millions of 
megawatt-hours, gray bars) decreased slightly. Hydropower generation may not meet projected future cooling 
demand, especially during summer. Figure credit: Boise State University and Cascadia Consulting Group.
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Electricity transmission and distribution grids are both a source of wildfire risk and are also at risk from 
wildfire, particularly in hot, dry, and windy conditions. Electric utilities and land management agencies 
are evaluating potential actions that they can take to reduce future wildfire risk and impacts on electricity 
systems (Box 27.3). Some Northwest electric utilities are exercising public safety power shutoffs or “fast 
trip” programs that trigger outages when faults are detected.298 Such shutoffs can reduce the likelihood 
of ignitions from the electric grid when complemented by other risk-mitigation measures but can also 
negatively affect local economies and human health (Focus on Western Wildfires). Risks to electric grid 
infrastructure from wildfires may also be higher in remote areas, as monitoring capacity is less robust.

Box 27.3. Washington State’s Electric Utility Wildland Fire Prevention Task Force

Many states, including those in the Northwest, are taking new action on climate-related challenges for critical energy infra-
structure. For example, in response to western wildfires in 2019 ignited by electricity transmission lines or that temporarily 
reduced electric services, the Washington State Legislature convened the Electric Utilities Wildland Fire Prevention Task 
Force299 with the intent of increasing electricity infrastructure resilience through improved coordination across agencies 
and information sources. The task force advised the Washington State Department of Natural Resources on vegetation 
management, communication protocols, and investigation protocols related to wildfire risk and electricity reliability. The 
three outcomes of the task force’s work were a model agreement for managing vegetation outside rights-of-way, protocols 
for coordinated investigation of wildfires that interact with utilities, and coordination of annual information exchanges 
among land managers, utility operators, and wildfire experts. 

Carbon emissions have been increasing on an absolute basis in the Northwest (Figure 27.7). The shift to 
low-carbon energy systems can be complex, and there are varied trade-offs and co-benefits between tech-
nological innovations that can enhance the viability of clean energy sources and increase the resilience of 
both infrastructure systems and the communities and industries dependent on them (KM 5.3).300,301 

Transitions to low-carbon energy may be perceived as requiring substantial time to accomplish, yet 
research has shown that considerable low-carbon transitions can occur in less than 15 years.302 Considering 
these conditions, states, local governments, and utilities have begun to develop low-carbon and decarbon-
ization plans and pathways. Oregon passed legislation to eliminate carbon emissions from the power grid 
by 2040, and Washington passed legislation to reduce carbon emissions by 95% from 1990 levels by 2050. 
In Idaho, cities such as Boise and utilities such as Idaho Power have carbon reduction plans.105,303 Agencies 
and utilities are utilizing diverse strategies including energy conservation and efficiency investments; design 
approaches such as buildings with southern-facing windows to reduce cooling needs; harnessing renewable 
gas from farms and municipal landfills; and exploring and utilizing alternative energy sources while investing 
in decarbonization technologies.300,304,305,306
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Carbon Dioxide Emissions from Fossil Fuels by State and Sector 

Carbon dioxide emissions from fossil fuel consumption vary widely by sector and state.

Figure 27.7. These graphs show carbon dioxide (CO2) emissions (in millions of metric tons) from fossil fuel con-
sumption by state (top) and sector (bottom). Carbon dioxide emissions from fossil fuel consumption are greatest 
in Washington, followed by Oregon and Idaho. Transportation emits more CO2 than other sectors across Idaho, 
Oregon, and Washington. Figure credit: Boise State University and Cascadia Consulting Group.

Transportation Infrastructure
Atmospheric rivers in 2021 illustrated existing understanding of how landslides and flooding can disrupt 
transportation routes.307,308 The disruption of transportation routes can lead to injury or death due to a 
lack of evacuation routes and cutoff from critical emergency services, healthcare, and other goods and 
services.29,309 In extreme cases, the loss of transportation routes and social services may displace households 
and reduce regional labor supply.310 Much of the Northwest’s transportation infrastructure, such as 
railroads, bridges, and highways, is aging and thereby increasing vulnerability to climate-related hazards. 
For example, the average age of all surveyed bridges in Oregon is 46 years old, and the typical design life is 
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75 years.311 Some state transportation agencies, such as Washington State Department of Transportation and 
Oregon Department of Transportation, have assessed climate risks to their routes and highways and various 
adaptation options (KM 13.1).312,313 

Transportation is the largest source of greenhouse gas emissions in the Northwest (Figure 27.7), and utilities 
and transportation agencies across the region are exploring electrification options to reduce emissions. 
However, efforts to electrify the transportation sector will increase electricity demand and place additional 
stress on the regional energy system (KM 13.1).314,315,316 Electric vehicles’ energy efficiency and electricity 
sources will affect the potential magnitude of reduction in transportation-related emissions (KM 13.4).314,316

Housing and Land Use
The majority of the land in urban areas is devoted to residential housing, which provides shelter to people 
during extreme events but can also exacerbate exposure to harmful impacts. The specific location of urban 
housing structures can directly affect the severity of local climate impacts. Urban areas are warmer than 
their surrounding landscapes, a phenomenon known as the urban heat island effect, and some urban neigh-
borhoods can experience temperatures upwards of 13°F warmer than other areas of the same city (KMs 
27.1, 12.2). Residential density in urban areas is increasing more in historically lower-income neighbor-
hoods, reducing the availability of green space and increasing the extent of impervious surfaces, thereby 
worsening heat island effects.68,100 Urban trees and other vegetation could provide shade, but there are 
trade-offs between mitigating heat islands and conserving water.317 Creating incentives or requirements 
for water-efficient landscaping (xeriscaping) while also providing shade and stormwater absorption could 
help reduce adverse impacts from extreme heat and storms.

Similarly, the location of housing beyond urban centers also interacts with the impacts from climate change. 
For example, housing in the wildland–urban interface (WUI)—or locations where wildland vegetation and 
houses meet—has increased over the past several decades and increases the risk of wildfire impacts on 
housing structures (KM 27.6).102,318

Furthermore, the quality of materials and types of amenities in both urban and rural housing design and 
construction affect exposure to some impacts, such as wildfire smoke. Households with access to HVAC and 
air filtration systems can improve indoor air quality and reduce wildfire smoke exposure;319,320 however, they 
may be insufficient to mitigate anticipated increases in the number of wildfire smoke days and associated 
high concentrations of fine particulate matter and other pollutants.321,322 

Climate change will also affect digital infrastructure, such as internet infrastructure systems. For example, 
fiber conduits and nodes in the greater Seattle area are at risk of inundation from sea level rise by the 
2030s,323 jeopardizing telecommuting strategies that some jurisdictions are using to reduce vehicle-miles 
traveled by employees and associated transportation-related emissions.

Because land-use laws determine how human activity is distributed in space and how infrastructure is built, 
they affect mitigation of and adaptation to climate change.324 While each state has a different set of land-use 
policies, state-level land-use planning guidelines can limit or expand opportunities for local land-use 
plans to respond to climate change (KMs 6.2, 12.3). Nevertheless, land-use laws and policies can facilitate 
adaptation in multiple ways, including protection (protecting existing structures from climate-related 
hazards via engineered structures), accommodation (continued use in hazardous locations, like flood zones, 
by improving design or development standards such as raising foundations or creating natural floodplains), 
or retreat (restricting new development in hazardous locations).324,325,326,327
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Key Message 27.5  
Climate Change Amplifies Health Inequities

The Northwest’s climate has historically been temperate and relatively mild, but shifting 
weather patterns associated with climate change are adversely affecting physical, mental, 
and community health (very high confidence). The incidence of illnesses and death during 
extreme heat events and wildfire smoke days is increasing, and climate change is stressing 
health systems (high confidence). Climate-related health risks disproportionately affect certain 
individuals and groups (very high confidence). Climate resilience efforts can be leveraged to 
improve health, especially among the most vulnerable populations (high confidence).

Multiple public health challenges have been associated with climate change. Those whose livelihoods are 
dependent on the weather—like outdoor day laborers and wildland firefighters—and people with preexisting 
health conditions and limited coping capacities face some of the gravest challenges (KM 15.1). COVID-19 has 
overextended the public health sector since 2020 and strained traditional approaches to reducing public 
health impacts from climate-induced disasters (such as cooling or warming shelters), because convening 
groups in large areas has been prohibited or limited (Focus on COVID-19 and Climate Change). 

Physical Health Impacts of Climate Change 
Climate change amplifies health risks, especially for those with underlying health conditions, and leads 
to physical health impacts such as premature mortality from heatwaves, compromised respiratory health 
due to wildfire smoke, infectious and vector-borne diseases, exposure to mold and environmental health 
hazards, diseases in some foods and natural resources such as shellfish toxins (KMs 27.2, 27.6), and exposure 
to toxicants (KM 15.1). Heatwaves and extreme heat, which are increasing in frequency and intensity, kill 
more people annually than any other natural hazard.328,329 Increasing frequency of wildfires will increase 
the number of poor air quality days.75 Together, heat and wildfire smoke have caused thousands of deaths 
in the Northwest since 2018. The greatest number of deaths occurred in summer 2021 (Figure 27.8)330 when 
almost a thousand people perished during an extraordinary heatwave that was partially attributed to climate 
change.331,332 Although it is unknown whether events such as the 2021 heat dome are an anomaly or will 
become increasingly frequent in the Northwest,333 future heat-related morbidity and mortality across the 
Northwest are expected to increase across all scenarios.69,334 Many of these deaths were preventable and 
happened because communities were maladapted to the level of heat, which disproportionately affected 
women, people of color, and people with chronic illnesses and placed additional strain on the Northwest’s 
healthcare system.69,330
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Heat-Related Emergency Room Visits for Health and Human Services (HHS) Region 10

Heatwaves, such as the heat dome event in the summer of 2021, place strains on healthcare systems.

Figure 27.8. The graph shows the number of heat-related emergency department visits for US Department of 
Health and Human Services (HHS) Region 10 (which includes Alaska, Oregon, Idaho, and Washington), relative to 
the rest of the country, from May 1–June 30 in 2019 and 2021. There was a sharp increase in emergency depart-
ment visits for heat-related illness during the 2021 heat dome event in HHS Region 10, relative to the heat-related 
emergency department visits for the region in 2019. HHS Region 10 also experienced relatively more heat-related 
emergency department visits during the 2021 heat dome event compared to the rest of the country over the same 
time period. Adapted from Schramm et al. 2021.335

Wildfire smoke can be severe in the region, particularly in highly populated areas, Idaho, and eastern 
Washington and Oregon.321,336 In the western US, smoke events from 2004 through 2009 were associated 
with a 7.2% increase in respiratory hospital admissions among adults over 65, compared to the previous 
decade. In Washington, smoke-related mortality increased during the 2020 wildfire season, when the 
ambient total particulate matter concentration changed from near zero to 100 micrograms per cubic 
meter (µg/m3) over the course of a summer.322 Increased particulate matter (PM2.5) due to wildfire smoke 
in the West has been associated with a predisposition to COVID-19 and higher COVID-19 case rates and 
mortality.337 Future wildfire seasons—and increases in PM2.5 associated with those wildfire seasons—is 
projected to increase excess asthma incidences by the 2050s under a very high scenario (RCP8.5; Figure 
27.9); Washington, Oregon, and Idaho are expected to see an increase of 25.7, 41.9, and 29.4 wildfire smoke–
related emergency department visits per 10,000 persons, respectively.336 The anticipated financial burden 
of healthcare costs associated with wildfire smoke exposure is expected to significantly increase across 
the Northwest.336,338,339
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Projected Asthma Burden per Wildfire Season in 2050

 
Excess asthma burden associated with wildfire smoke is expected to disproportionately affect the Northwest. 

Figure 27.9. Northern Idaho, coastal Oregon, and southwest Washington are expected to face some of the highest 
wildfire smoke–related asthma burden in the Northwest. Excess asthma incidences related to wildfire smoke are 
expected to increase across the Northwest. The figure shows the average expected total number of excess asth-
ma events per 10,000 people per wildfire season by the 2050s under a very high scenario (RCP8.5). Adapted from 
Stowell et al. 2022336 [CC BY 4.0].

Additional health-related impacts are associated with heatwaves and wildfire smoke.340 Lower birth weight 
and premature birth are attributed to these events,341,342 although empirical evidence from the Northwest is 
still emerging. Similarly, evidence of an association between repeated long-term exposure to wildfire smoke 
and cancer incidence is emerging.343 

People with access to air-conditioners or air purifiers, along with the financial capacity to operate these 
systems, will fare better than those whose homes are poorly insulated and allow for a greater concentration 
of ambient pollutants to enter indoor spaces. Young children and older adults are particularly vulnerable, as 
are those who live in trailer parks, recreational vehicles, or historically disinvested urban areas. Discrimina-
tory policies such as redlining also contribute to greater exposure to heat and other climate-induced events, 
such as urban flooding (KM 27.1). 

https://creativecommons.org/licenses/by/4.0/legalcode
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Mental Health Impacts and Climate Change
Each extreme event has its own set of observed mental health consequences, including some overlapping 
disorders such as post-traumatic stress, anxiety, depression, and suicide.344,345 Negative mental health 
outcomes have been observed before and after a climate-related extreme event.346 For example, wildfire 
smoke can limit outdoor activities, reducing individuals’ ability to exercise, recreate, and relieve stress, 
leading to additional mental health consequences (KM 27.6). Mental health consequences of climate change 
may resolve quickly; however, long-term impacts can be delayed and, in the case of post-traumatic stress, 
can even affect future generations.347,348

Idaho, Oregon, and Washington have a higher prevalence of mental illness relative to the rest of the 
country.349 The mental health impacts of climate change will continue to be uneven. Youth concerned about 
climate change, Tribal communities losing cultural resources at a rapid pace, and houseless individuals 
who experience increased exposures to climate change have a higher prevalence of climate-related mental 
illnesses compared to other populations.345,350,351,352 

Community Health and Well-Being Impacts
Climate change impacts community health and well-being in many ways. Increased temperatures are 
associated with an increase in violence and self-harm, including suicide.344,353 The magnitude and duration 
of droughts in the Northwest are projected to increase and potentially disrupt agricultural production 
and exacerbate food insecurity,354 which can cause psychological distress.355 Extreme events will continue 
to disrupt medical care and services, and injury and illness from such events are expected to exceed the 
capacity of the healthcare system. Strengthening community and social cohesion can improve community 
health outcomes and increase preparedness for disasters and extreme events.356,357

Tribal Well-Being Impacts
Climate change is disrupting Tribal communities’ access to traditional foods, compounding legacy effects 
of settler colonialism that have led to increased consumption of processed foods, which is associated 
with higher rates of diabetes, heart disease, and obesity for Tribal communities.358,359,360 Algal blooms have 
contaminated shellfish to the point that they cannot be consumed during traditional seasons (KM 27.2). 
Increasing temperatures have created more favorable conditions for transmission of parasitic and invasive 
species among food sources such as deer and fish.361,362 The continued effects of climate change on the 
phenology of important species and access to cultural resources are expected to disrupt multiple cultural 
and ceremonial activities, compounding mental, cultural, and physical well-being issues for Tribes.265,352,363 
Impacts to these cultural resources and sites disrupt intergenerational teachings, an important component 
of Indigenous health and a method to address intergenerational trauma (KM 27.6).364

Climate Action Can Benefit Human Health and Address Inequities
Historically, the intersection of climate change and health has been unclear, leading to insufficient capacity 
and resources for health agencies to properly respond and prioritize climate change actions.365 However, 
because of the health consequences of recent extreme events, public health responses to climate change 
have become an essential part of climate adaptation, and health resilience frameworks, such as the CDC’s 
Building Resilience Against Climate Effects (BRACE) or Oregon’s Climate Equity Blueprint, are becoming 
more common.366 Many strategies—such as setting universal climate and health goals and providing 
adequate resources to communities and populations to reach these goals—offer promise for avoiding 
negative public health outcomes due to climate change and can advance regional resilience (KM 27.1).367 For 
example, investments to increase electric vehicle adoption and active transportation (e.g., walking, biking) 
are expected to lead to greenhouse gas emissions reductions, improvements in air quality, and reductions 
in fatal traffic accidents.368 Investments in cooling options—such as shade coverage from trees, cross-ven-
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tilation in apartment units, and air-conditioning capacity—can support communities, particularly formerly 
redlined communities, in adapting to extreme heat events (KM 27.1).369

Key Message 27.6  
Climate Change Affects Heritage and Sense of Place

Climate change has disrupted sense of place in the Northwest, affecting noneconomic values 
such as proximity and access to nature and residents’ feelings of security and stability (high 
confidence). Place-based communities, including Tribes, face additional challenges from 
climate change because of cultural and economic relationships with their locale (very high 
confidence). Leveraging local or Indigenous Knowledge and value systems can spur climate 
action to ensure that local heritage and sense of place persist for future generations (medium 
confidence). 

The heritage of the Northwest is intertwined with the diversity of landscapes, economies, and quality of 
life (Figure 27.10). Climate change affects all these core characteristics of the Northwest, with impacts on 
the quality of life and sense of place—the attachment or relationship that people feel to their locations and 
environment—for all communities and the ability to share the familiar parts of where one lives with others 
and across generations.370 While there are differences among cultures’ relationships, there are deep com-
monalities. Supporting the continued emotional and cultural well-being of residents across the region will 
require a mutual appreciation from multiple perspectives across diverse communities. 

Sense of Stability and Security 
Climate change can negatively affect peoples’ sense of security and stability due to disruptions to supply 
chains and food systems, which underpin economies and communities (KM 18.2; Focus on Risks to Supply 
Chains).371,372 For example, a forest products industry requires regular inputs of timber and cannot thrive 
on supplies that increasingly come in pulses or waves due to drought, wildfires, and insect infesta-
tions.373 Climate change impacts to natural resource economies will affect residents’ financial security and 
livelihoods (KM 27.3) and will have cascading impacts across regional to international economic systems 
(KM 19.2).
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Heritage, Sense of Place, and Amenities at Risk

 
The heritage of the Northwest is intertwined with the diversity of landscapes, economies, and quality of life.

Figure 27.10. These photos illustrate different heritages, cultural traditions, and amenities at risk from climate 
change. (top left) Coastal change is threatening beaches and shellfish habitat for the Swinomish Tribe, threaten-
ing cultural activities like the Swinomish Clam Bake. (top right) Fire retardant drops protect vulnerable homes in 
the wildland–urban interface. (center left) Culturally important foods, such as camas, will be affected by climate 
change. (center right) Climate change is affecting salmon, potentially affecting the ability of some Tribes to roast 
and smoke salmon. (bottom left) Wildfire smoke days are increasing, affecting school recreation opportunities. 
(bottom right) Warmer winters, such as the winter of 2015, will lead to less winter snow, affecting ski resorts such 
as Mount Baker Ski Resort, Washington, which had no snow on February 15, 2015, during the height of ski season. 
Photo credits: (top left) ©Richard A. Walker; (top right) National Interagency Fire Center; (center left and bottom 
left) ©Charles Luce; (center right) ©Samantha Chisholm Hatfield; (bottom right) ©Duncan Howat.

Many in the Northwest have moved from city centers to an expanding wildland–urban interface (WUI) 
(Figure 27.11),102,103,104 increasing community exposure to wildfires and floods.374 Homes dependent on shallow 
wells are at risk from more frequent and intense drought conditions (KM 27.4).375 Increases in the frequency 
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of algal blooms or outbreaks of forest diseases and pests reduce the value of homes with water frontage 
or surrounded by forest (KM 19.3).376,377,378 The decline of home values, aggregated across communities, can 
lead to local economic and community instability by reducing the desire or ability to rebuild after fires and 
floods.379,380 Although insured households may be able to rebuild, climate risks can increase insurance costs 
and decrease insurance availability, affecting which residents and businesses thrive in the future.381 

Growth in Wildland–Urban Interface (1990–2020)

The growth of homes in the wildland–urban interface puts an increasing number of people at risk of wildfire and 
flooding.

Figure 27.11. The maps show growth in the wildland–urban interface (WUI; dark purple) areas, which are asso-
ciated with increased wildfire and flooding risks, between 1990 and 2020 near Bend, Oregon (a); Spokane, Wash-
ington (b); and Boise, Idaho (c). Bend and Spokane have experienced fast rates of development and population 
growth that have led to new areas being developed as WUI. Figure credit: USDA Forest Service, NOAA NCEI, and 
CISESS NC.

Environmental Amenities and Sense of Place
Northwest residents value the region for its environmental amenities like good air and water quality and 
proximity to recreational opportunities.263,382 Climate change has already started and will continue to 
disrupt many kinds of outdoor recreational activities.79,383 Multiple recreational seasons have simultaneously 
shortened and shifted. Skiing and snowmobiling seasons have started later and become shorter over much 
of the region, especially in the Cascades,13,384 affecting winter recreation businesses (KM 27.3). Loss of spring 
snowmelt will shift opportunities for rafting, kayaking, and canoeing into rainy winter months, when rapidly 
fluctuating flow conditions are less safe. Water-based recreation demand is expected to increase in spring 
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and summer months; however, reduced water quality and harmful algal blooms are expected to restrict 
these recreation opportunities.79 

Many previously forested trails and camping areas have already lost forest cover due to wildfires and 
drought.385 As the frequency of disturbances increases, so will the number of dead and downed trees,386 
closing roads, trails, and campgrounds and potentially causing injuries or death for recreationists.387 Greater 
flooding risk in winter months will pose risks to recreational facilities and users.388 More frequent smoke 
and extreme heat events will increase risks to outdoor summer recreationists, especially for high-exertion 
activities.389 State health agencies, such as the Idaho Department of Health and Welfare, have developed 
recreation guidelines for K–12 and adult fitness activities and sports in response to increasing wildfire 
smoke days and decreased air quality.390

Climate change will also affect recreational and subsistence hunting, gathering, and fishing activities. 
Although some game species may benefit from increased shrub cover and reduced winter mortality, 
increasing populations can lead to other challenges, affecting managed resources and increasing pathogen 
spread.391,392 Algal blooms and increased toxin levels will lead to shellfish harvest closures, sometimes lasting 
entire seasons. While these impacts will affect recreational hunters and fishers, impacts will be greater 
for households and communities that are nutritionally dependent on these resources, such as Tribal 
communities and households reliant on subsistence diets.393

Amenity migration, or movement of people to areas with higher environmental quality or increased access 
to amenities, will be affected by climate change in various ways.394,395 For example, people moving to the 
WUI to be closer to environmental amenities will experience increased risks of wildfires and, in some cases, 
landslides (Figure 27.11). Additionally, there are compounding challenges for communities that are receiving 
an influx of amenity migrants, especially rural and low-income communities where established residents 
provide the labor force but may become priced out by increasing costs of housing and other necessities.396,397 
Interacting stresses between socioeconomic and development impacts associated with migration and 
climate change will affect communities in high-amenity areas in the Northwest, such as ski communities in 
the Cascade Range or island communities in the San Juan Islands.398

Tribal Cultures and Connection to the Land
Climate change has affected Tribal harvesting, hunting, and ceremonial practices.399 Climate change will 
impact Pacific salmon (KM 27.2) and other cultural resources such as Pacific lamprey, deer, elk, bear, berries, 
eel, flounder, sturgeon, shellfish, and seaweeds.400 Plant die-offs and range shifts can disrupt and impede 
Tribal access to traditional foods, thereby affecting Tribes’ and Indigenous Peoples’ sense of place and 
connections (KM 27.5).363 Extreme weather events and extreme heat and cold can prevent Tribal members, 
especially elders, from participating in Tribal ceremonies. Access to ceremonial sites can also be disrupted 
or damaged by flooding, landslides, and wildfires, exacerbating degradation associated with other land-use 
decisions (KM 27.1). 

Indigenous Knowledges can be utilized to increase resilience to climate change for Tribes.251 Tribal 
landscape management is one method for maintaining connections to landscapes and preserving ceremonial 
sites, medicinal plants, and gravesite locations for future generations.401,402,403 However, federal, state, and 
local jurisdictions have prevented some Tribes from utilizing Indigenous management techniques such 
as prescribed burning, which can remove underbrush to reduce fire risk and establish wildlife corridors 
(KM 27.2), thereby limiting Tribes’ ability to exercise their sovereignty and to maintain a sense of place for 
future generations.404,405,406,407,408 Western adaptation options of replacement, fortification, or relocation 
(KM 27.4) may not be possible or appropriate, as some sites (e.g., gravesites and ceremonial sites) do not 
have one-to-one exchange equivalents. Despite these limitations, federal–Tribal partnerships can increase 
landscape resilience to future climate change risks.409,410
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Maintaining a Sense of Place and Heritage for the Northwest
Climate change poses an existential threat to the ability of Northwest communities to maintain their sense 
of place and heritage for future generations. Many cultures rely on nature-based experiences to transfer 
knowledge and form cultural identity. For example, the Swinomish Tribe holds cultural clam bakes, where 
community elders transfer Traditional Knowledges about the natural world that are vital to maintain their 
cultural well-being and heritage.399 However, recent shoreline changes and projected beach loss threaten 
access to these culturally important shellfish harvest areas, reducing opportunities to hold cultural clam 
bakes.411 

Communities across the Northwest pride themselves on their environmental values and actions, such as 
promoting conservation or voluntarily employing sustainable practices. Leveraging these community values 
can lead to innovative climate adaptation and mitigation policies at the local level,412,413 furthering regional 
climate mitigation and adaptation goals (KM 27.4) to ensure that the heritage and the communities of the 
Northwest persist for future generations. 
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Traceable Accounts
Process Description
The Northwest chapter focuses on advances in regional climate science and understanding of the social 
and economic impacts of climate change. Therefore, the author team reflects the breadth and depth of 
scholarship and experiences about climate science, impacts, and responses. The author team was recruited 
from a list of nominated authors, regional experts from past assessments and conferences, and recom-
mendations from authors or author candidates. The author team includes: 1) a diversity of expertise in the 
areas of physical climate science, social sciences, economics, public health, ecosystem services, adaptation, 
and mitigation; 2) a diversity of geographies and institutions that represent each state in the Northwest; 
3) a range of experiences and career stages that includes university researchers, practitioners, and state 
government employees; and 4) a diversity across multiple demographic characteristics, including gender, 
race, and ethnicity. 

Initial Key Message themes were developed via consensus, and these Key Messages were confirmed at the 
Northwest’s regional engagement workshop on February 1, 2022. Specific content within the Key Messages 
was further refined based on comments from the regional engagement workshop and public comments 
on the Zero Order Draft. Authors were assigned to Key Message–specific teams based on their expertise 
and were charged with developing the text, citations, Traceable Accounts, and Key Messages. Key Message 
narratives were developed to ensure that content built off prior National Climate Assessments (NCAs) and 
was not repetitive of previous NCAs (Table 27.2). Author meetings were generally held biweekly throughout 
development of the Fifth National Climate Assessment (NCA5) for discussions and deliberations and to 
ensure that deadlines were met. Additionally, the smaller Key Message teams met frequently to refine their 
Key Messages, text, figures, and Traceable Accounts. 
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Table 27.2. How NCA5 Northwest Chapter Built on Prior NCAs

NCA5 Key Message How NCA5 Built on NCA35 and NCA44

27.1 Frontline 
Communities

Since NCA4, much more research has been published on the distributional burden of climate 
change on various communities across the Northwest. NCA5 expands on the literature base to 
focus on the different dimensions of how climate change inequitably impacts various groups. 
Additionally, NCA5 focuses on some of the emerging information on how different frontline 
groups are advancing climate action within their communities and states. 

27.2 Ecosystem 
Changes

More research has been published since both NCA3 and NCA4 on the ecological impacts of 
climate change. NCA5 builds on this work by focusing on ecological responses across the 
Northwest to extreme events and the interaction between climate change and human activity 
(e.g., land use). Additionally, NCA5 builds on how different types of adaptation responses, such 
as restoration, can build ecological resilience.

27.3 Economics and 
Well-Being

Since NCA3 and NCA4, there has been more scholarship on the economic impacts of climate 
change. NCA5 dives deeper into some economic impacts previously discussed, including 
impacts to the natural resource economy. NCA5 also provides a synthesis of new research on 
the recreational impacts of climate change and economic opportunities in a low-carbon future. 

27.4 Infrastructure and 
Resilience

NCA5 builds on NCA3 and NCA4 by focusing on different types of infrastructure systems and 
their responses to climate change. NCA5 also highlights the trade-offs of climate action across 
systems, such as the trade-off between transportation electrification and energy resilience. 
Additionally, NCA5 focuses on how infrastructure systems and the built environment are the 
largest contributors of greenhouse gas emissions and provides a narrative on climate mitigation 
and decarbonization in the region.

27.5 Health Inequities

Since NCA4, more extreme events, such as large wildfires, more wildfire smoke days, and 
extreme heatwaves, have led to health consequences. NCA5 builds on NCA4, which delved 
into a variety of impacts, by focusing primarily on heat and smoke impacts to public health. 
Additionally, NCA5 adds emerging research on the mental and community health impacts of 
climate change. 

27.6 Heritage and 
Sense of Place

Since NCA4, there has been more research that establishes how regional sense of place is 
changing due to climate change. NCA5 provides more in-depth coverage on many of the topics 
covered in NCA4, such as sense of security from extreme events, how different amenities are 
changing, and how different iconic parts of the Northwest are being affected. Additionally, NCA5 
provides additional discussion of climate-related migration and how that affects a community’s 
identity and sense of place. 

Key Message 27.1  
Frontline Communities Are Overburdened,  
and Prioritizing Social Equity Advances Regional Resilience

Description of Evidence Base
Recent studies and reports have built on decades of research that have provided strong evidence 
that the prevalence of people of color in a community continues to be the most significant predictor 
for where environmental hazards are sited throughout the Northwest, due to racialized and racist 
policies.59,60,62,63,64,65,66,97 A wealth of evidence, including peer-reviewed research, gray literature, and 
government reports and resources, links racial and socioeconomic demographics across the Northwest 
with disproportionate exposure and vulnerability of frontline communities to a variety of climate 
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hazards and extreme events, including wildfire, wildfire smoke and impaired air quality, extreme heat, 
and flooding.59,61,62,67,68,70,71,74,75,76,77,89,92,93,95,414

Additionally, NCA5 listening sessions and community-led research provided evidence on the lived 
experiences of frontline communities with climate impacts and how these communities are implement-
ing community-informed climate resilience priorities. The literature supports the diversity of approaches 
that frontline communities are utilizing to increase their resilience to climate change, including for 
urban communities of color,59,97 rural and natural resource–dependent communities,79,80,81 and Tribal and 
Indigenous communities.93,265 Peer-reviewed literature and gray literature document that while frontline 
communities are inherently resilient to both climate change and other forms of oppression, policies 
and other structural barriers continue to prevent frontline communities from enacting community-led 
adaptation strategies.78,90,91,92,93 

Major Uncertainties and Research Gaps
While the priorities and needs of frontline communities are increasingly being considered in state and local 
government policies, plans, and budgets in the Northwest, such efforts are in early stages of implementa-
tion. While these efforts are resulting in some benefits to frontline communities in the near term, long-term 
outcomes are yet to be seen. Advancing climate justice and social equity in the region is dependent on insti-
tutions’ ability to transform and meet the needs of frontline communities. 

While community-led research and plans provide documentation of frontline communities’ priorities, 
it is critical to note that these sources probably do not represent the full range of perspectives, values, 
and experiences of the diverse communities in the Northwest. Assessment authors understand that 
communities are not monoliths and that many adaptation and resilience strategies are culturally, temporally, 
and geographically specific; therefore, the information in this assessment cannot be used to make blanket 
statements about all communities experiencing environmental and climate injustices in the region.

Description of Confidence and Likelihood
Based on the breadth of available research and literature, authors concluded that there is very high 
confidence that frontline communities are experiencing disproportionately high exposure to climate-related 
hazards, although there is variation across the types of frontline communities. 

Additionally, because of the wealth of community-led documentation, government reports, and preliminary 
peer-reviewed research, authors concluded that there is high confidence that frontline communities 
generally have fewer resources to adapt and respond to climate change but are leading efforts to increase 
resilience to climate change and extreme events. 

While there is a growing body of evidence suggesting that the priorities, values, and needs of frontline 
communities are increasingly being considered in state and local policies and plans, these efforts are still 
in early stages of implementation and long-term outcomes remain to be seen. In addition, existing efforts 
are not yet sufficient to meet the scale and speed of justice-centered climate action required to secure 
a safe and livable future for frontline communities. Therefore, authors of this Key Message have medium 
confidence that the extent of these efforts will deliver long-term resilience benefits and climate justice to 
the region. 
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Key Message 27.2  
Ecosystems Are Transitioning in Response to  
Extreme Events and Human Activity 

Description of Evidence Base 
Strong evidence supports the projection that ecosystems will change as climate changes. Numerous 
assessments project extensive changes in species distributions as climate changes. Additionally, extreme 
events (e.g., droughts, floods, and heatwaves), which are becoming more frequent and intense, may be 
equally relevant to the physical condition and population dynamics of species,107,109 especially those with 
short generation times.110 Multiple peer-reviewed publications and government reports document the 
extensive impacts of extreme events on Northwest ecosystems, especially in the past two decades. Given 
projections of future climate, it is expected that wildfire will continue to affect forest systems,113,114,115,116,117,118,119

,120,121,123 changes in hydrology and temperature will affect aquatic ecosystems,128,129,130,131,132,133,134,138,139 and ocean 
acidification and marine heatwaves will affect coastal and marine systems.42,48,54,145,146,147,148,149,150,151,152,154,155,159,415

In addition, robust peer-reviewed evidence documents how these ecosystem-level changes will have myriad 
effects on native species, including game species,391,392 trees,232,234,237,238,244 marine taxa,148,149,150 and the region’s 
iconic salmonids48,159,160,161,162,163,164,165,415

Extensive evidence within the peer-reviewed literature also demonstrates the widespread impact of human 
land uses on the extent to which species can adapt to environmental change, including climate change.104

,118,119,120,121,122,144 For example, fine-grained variation in land cover, including land cover types associated with 
human activities, affects the resilience of species or ecological processes to climate variability and change189 
and the extent to which land uses function as stressors. Historical and recent fragmentation of a species’ 
habitat and barriers to movement affect its capacity to adapt to both human-caused and natural forms of 
environmental change.129,130,144,186,187

There is extensive evidence that conservation of genetic diversity and ecological protection and restoration 
can benefit ecosystem processes and increase species’ adaptive capacity.120,121,122,192,193,194,195,196 For example, 
restoration via removal of impassable dams and structures across the Northwest has restored some natural 
ecological and hydrological processes that allow anadromous fishes to access historical habitat.194,197,198,199,200 
However, evidence of the effectiveness of other types of ecological management, such as vegetation removal 
to mitigate wildfire risk and market-based ecosystem management tools, is limited, especially in the 
long term.204,205,206,208,209

Major Uncertainties and Research Gaps 
Relations between climate and population dynamics of most species are complex, so there is uncertainty 
in projections even for well-studied species. Moreover, distributions, abundances, or other species-level 
metrics more closely reflect interactions among climate variables, and interactions among species, rather 
than single climate variables.111,112

Evolutionary responses to climate are also complex.212,213 The likelihood of adaptation depends in part on the 
amount of genetic variation in a population or species, which is often related to the number of individuals 
and their relatedness.188 The feasibility of quantifying abundance, relatedness, and genetic variation differs 
among populations and species, and these measures have not been estimated for a majority of populations 
and species. Furthermore, empirical estimates of opposing selection pressures in different environments 
are difficult to obtain. Similarly, phenotypic plasticity, its heritability, and potential response to selection 
have not been estimated in most taxa. Accordingly, the adaptive capacity of most taxa is highly uncertain. 
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Also, data on which biological and physical attributes affect viability most strongly are not available for most 
species. 

The extent to which restoration efforts can increase genetic variation and ecosystem function and pro-
ductivity is uncertain, especially given the extensive anthropogenic modification of ecosystem structure, 
composition, and function. Because ecosystems rarely can be restored to a historical state, restoration 
actions tend to focus on increasing ecosystems’ capacity to support diverse and valued functions and 
services and enhanced genetic and species variation. Information needs include improved understanding 
of habitat quality, stress tolerance, and adaptation capacity of diverse species. There are substantial gaps 
in understanding of the complex interactions within and among species, communities, and biogeochemical 
processes, all of which are being modified by climate change and land use. 

Description of Confidence and Likelihood
The enormous body of evidence on ecological sensitivity to climate yields very high confidence in projections 
of change, despite uncertainty in how individual and interacting ecological components will respond. 
Similarly, although adaptive capacity is difficult to quantify, there is very high confidence that such capacity 
has been reduced by decreases in abundance and genetic diversity of many native species. There is very high 
confidence that human activities and land uses interact with ecological responses to climate change, and in 
many cases exacerbate these effects.

Climate change impacts could be ameliorated by changes in human actions. However, restoration to 
previous ecological states often is unlikely. For example, certain non-native invasive species are unlikely to 
be eradicated, and land modifications rarely can be completely reversed. Furthermore, climate change will 
modify some species and ecosystem characteristics regardless of human actions. Although the scientific 
community has medium to low confidence that ecosystem restoration efforts can increase genetic variation 
in many native species, there is high to medium confidence that reconnecting and improving the quality of 
species’ habitats can increase the feasibility of species persistence. The likelihood of ecological recovery 
is location- and context-specific and depends on factors including the severity of ecological stressors; the 
location, timing, design, and scope of restoration actions; and the potential to restore abiotic and biotic 
processes, land cover, and flows of energy and genes. Thus, the authors have medium confidence that 
human-led adaptation efforts can reduce exposure to climate-related hazards.

Key Message 27.3  
Impacts to Regional Economies Have Cascading Effects  
on Livelihoods and Well-Being

Description of Evidence Base
Over the past several decades, multiple peer-reviewed studies have established how climate change affects 
diverse annual and perennial cropping systems,216,217,218,219,220,221,222,223 fishery systems,225,247,248,249,250,253 forestry 
systems,233,234,236,237,242,244 and the tourism industry.16,79,256,257,258,261

Despite these varying climate impacts, there is emerging science, including peer-reviewed sciences, that 
indicates that the Northwest continues to maintain economic resilience to climate change due to the 
region’s inherent diversification. For example, federal crop insurance for the Northwest shows multiple 
weather- and climate-related causes of crop loss (e.g., drought, heat, freeze, frost, excess moisture), demon-
strating the diversity of risks agricultural producers experience.230 However, new and emerging opportuni-
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ties in these important economic sectors are also beginning to be noted.82,83,87,231,243,244,245 The effectiveness and 
extent of these new adaptation and mitigation opportunities is still unclear.

Emerging case studies, gray literature, and frameworks, such as the just transition framework, are being 
implemented across the Northwest to transition to a low-carbon economy.97,246,303,416,417 There are frameworks 
and evidence that associate economic resilience with prioritizing worker protections and marginalized labor 
populations.270,272 However, such publications in the Northwest region are still relatively new and limited 
in extent.

Major Uncertainties and Research Gaps
Recent events such as the 2021 heat dome have highlighted the significant impacts of extreme weather. 
Regional industries are investing in research that can increase understanding of risk factors associated 
with extreme weather and assess whether the risks are high enough to warrant additional infrastructure 
investments and management alternatives to limit damage. Much of the existing literature on climate 
change impacts on the region is based on limited climate ensembles rather than large ensembles, which 
are key to understanding extreme weather probabilities and impacts. New efforts addressing this gap are 
starting to be initiated, especially those addressing the regional agricultural industry.

The potential for new adaptation and mitigation opportunities is still unclear. Additional region-specific 
information is necessary to obtain a better picture of the potential. The region is still in its early phases of 
implementing low-carbon economy transition plans and strategies. There are still many gaps associated 
with the efficacy of implementing these plans. Evaluation of the recently launched efforts should provide 
valuable information for future streamlining of these efforts.

Description of Confidence and Likelihood
Because of the wealth of peer-reviewed research published across multiple decades, we have very 
high confidence that climate change is affecting—oftentimes in negative ways—natural resource– and 
outdoor-dependent economies, although the ways they are affected will be variable depending on the 
location and industry or commodity. Based on robust peer-reviewed literature and a growing number 
of publications specific to the Northwest, there is high confidence that climate change effects on these 
industries will have cascading impacts on the livelihoods of resource-dependent communities. Because 
of an emerging evidence base in the peer-reviewed literature—and a nascent evidence base specific to 
the Northwest region—the authors have medium confidence that the region’s natural resource industries 
are effectively responding to climate change and that a transition to a low-carbon economy can 
impart economic resilience, especially for those disproportionately impacted, such as workers in fossil 
fuel–dependent industries and outdoor laborers. 

Key Message 27.4  
Infrastructure Systems Are Stressed by Climate Change  
but Can Enable Mitigation and Adaptation

Description of Evidence Base
There is considerable evidence that climate change and extreme events have negatively affected built infra-
structure, especially older infrastructure, in the Northwest.100,142,273,278,279,291,307,308,311,318,323 Evidence varies among 
sectors, and multiple studies document effects of drought on water infrastructure and supply,277 effects of 
wildfires on virtually all types of infrastructure,142,277,418 and effects of extreme precipitation and flooding on 
water and transportation infrastructure.29,281,282,283,323
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Multiple studies highlight the interdependencies of systems.274,275,276,291,294,310,314,315,316 Within the Northwest, 
infrastructure system dependencies can spark conflicts about trade-offs among uses and between 
adaptation to and mitigation of climate change. These trade-offs have been documented in peer-reviewed 
publications and government reports and plans.293,295,296,314,315,316,419 Furthermore, some studies suggest that 
climate adaptation and mitigation actions across infrastructure systems can lead to cascading consequences 
in other sectors, such as public health, water conservation, and land use (Focus on Western Wildfires).277,278 

Despite these conflicts and trade-offs, emerging case studies document approaches to manage trade-offs 
in use of water, transportation, and electricity infrastructure. There are examples of new technology and 
data products to support adaptation285,286,300,304,305,306 and case studies of collaborative efforts to address these 
complex systems and their responses to climate change.105,303,418

Major Uncertainties and Research Gaps 
Trade-offs among uses of infrastructure and efforts to increase infrastructure resilience create substantial 
uncertainties in the social and environmental effects of those actions. For example, electrification of mass 
transit and vehicles can reduce emissions of greenhouse gases but strain energy supplies, affecting adoption 
of electric vehicles across communities. Similarly, provision of air-conditioning and air filtration, especially 
in regions where they are currently rare, can alleviate the public health consequences of extreme heat but 
strain energy supplies. Potential consequences of decreasing wildfire exposure may come at the expense of 
those medically dependent on electricity.

Description of Confidence and Likelihood
The available research, peer-reviewed literature, and case studies indicate that there is very high confidence 
that climate change, climate hazards, and climate-related extreme events have stressed the Northwest’s 
built infrastructure, and that there is very high confidence that climate change will continue to stress these 
systems. Additionally, there is broad agreement that these infrastructure systems are complex and inter-
related and, therefore, that climate-related impacts or responses to extreme events will present trade-offs 
and lead to conflicts over use. Within the Northwest, documentation of these conflicts and trade-offs varies 
among sectors and locations. Nevertheless, the literature continues to highlight trade-offs among systems. 
Therefore, there is very high confidence that climate-related disruptions and efforts to adapt to and mitigate 
the effects of climate change on a given infrastructure system may stress other infrastructure systems. 
Multiple case studies highlighted how practitioners are managing these conflicts and trade-offs via collab-
orative planning, engineering, and design. Given the breadth of case studies across sectors, there is high 
confidence that cross-sectoral and multisystem planning will increase the resilience of built infrastructure 
systems to future climate change. 

Key Message 27.5  
Climate Change Amplifies Health Inequities

Description of Evidence Base
An extensive peer-reviewed literature base documents the physical and mental health impacts of extreme 
events and climate change,69,75,321,322,330,334,335,336,337,340,341,345 and a smaller but growing evidence base documents 
the community health impacts of climate change.344,353,355 The Northwest has experienced more extreme heat 
events, wildfires, and wildfire smoke days in the past decade, and research has documented mortality and 
morbidity directly associated with these hazards and impacts.69,328,329,330,334 The evidence connecting extreme 
heat, for example, to poor mental health outcomes such as anxiety, psychological fatigue, and suicide is still 
emerging, although researchers and clinicians are developing promising methodologies and approaches to 
address climate-related mental health needs.345
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Multiple lines of evidence document the inequitable distribution of climate-related health risks among 
Northwest communities.265,322,337,345,350,351,352,358,359,360,363,364 There are some gaps specific to the Northwest region 
on climate change impacts to community health (e.g., domestic violence). However, both national and 
international peer-reviewed articles document these associations. Multiple case studies and gray literature 
and an emerging peer-reviewed literature base document how health professionals and communities 
are responding to increasing public and community health challenges induced or exacerbated by 
climate change.356,357,364,367

Major Uncertainties and Research Gaps
Reports and published studies have focused on community impacts following extreme events, or other 
traumatic events felt at the community level, that may reduce social cohesion. More research is needed 
to better understand the regional extent of mental health challenges from climate change and to inform 
protocols to better prepare health professionals for climate-related community health impacts. There are 
also opportunities to decolonize public health methods and improve the integration of local and Indigenous 
knowledge systems and methodologies to better inform public health research. 

There is still uncertainty about the extent that climate change will place additional stress on healthcare 
services in the Northwest. Preliminary research based on previous extreme weather events highlighted 
medication and medical equipment supply chain challenges, yet the demand for healthcare is expected 
to increase due to extreme events. However, compounding stresses that lead to shortage of healthcare 
workers, other public health challenges (e.g., COVID-19), and acute climate-related extreme events are 
beginning to illuminate potential gaps in the healthcare system. 

There is still uncertainty in associating community health impacts, such as domestic violence, with climate 
change and its subsequent impacts on the healthcare system. 

Description of Confidence and Likelihood 
Given the breadth of literature documenting climate change impacts on physical, mental, and community 
health, the authors have very high confidence that climate change is adversely affecting public and 
community health outcomes in the Northwest. The authors have high confidence that mortality and illnesses 
related to extreme heat events and poor air quality is increasing and further stressing the public health 
sector. This confidence assignment is based on research that illuminates the association between morbidity 
and mortality during and after extreme heat events, such as the 2021 heat dome, and the increasing number 
of wildfire smoke days across the region. The authors also have very high confidence that climate change and 
extreme events worsen existing health disparities, unequally distributing the health burden on groups such 
as older adults, communities of color, Tribal communities, and low-income communities. On the basis of 
emerging research and case studies, the authors have high confidence that climate adaptation and mitigation 
efforts can lead to health co-benefits. 

Key Message 27.6  
Climate Change Affects Heritage and Sense of Place

Description of Evidence Base
In the Northwest, a growing evidence base of scientific literature, gray literature, and community 
knowledges continues to elucidate the interactions between climate change and the regional amenities 
and lifestyles that make the Northwest an attractive place to live, work, and visit. For example, multiple 
peer-reviewed publications document the ways in which climate impacts have disrupted key industries 
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that are critical to supply chains and economic and community stability249,371,372,373 and local infrastructure 
(KM 27.4).375 Additionally, multiple peer-reviewed publications document the interactions between climate 
change and land use, such as growth of the wildland–urban interface102,103,104 and the increasing community 
exposure to climate-related events such as wildfires and flooding.103,374,381 Multiple publications document 
these cumulative risks to safety, amenity access, and sense of place across the Northwest.376,377,378,379,380,388

The literature has documented how places with more or higher-quality environmental amenities (e.g., 
recreation, proximity to outdoors, good air and water quality, less traffic congestion) drives migration 
to more rural and exurban areas.263,382 A wealth of gray literature and some peer-reviewed research 
document how climate change affects amenities, including recreation across all seasons79,384 and envi-
ronmental quality.390 There are multiple peer-reviewed publications that document how impacts to 
these amenities can lead to regional emigration, migration, and displacement, especially as a result of 
climate-related extremes.394,395,396,397,398

There are multiple lines of research that detail climate-related impacts to place-based communities. For 
example, climate change will affect Tribes’ cultural and subsistence resources,92,251,265,363,364,399,400 which can 
have adverse impacts on Tribal sense of place and Tribal health and well-being (KM 27.5).93,95,363,393,401 Other 
communities that have generational ties to specific rural or exurban areas—such as industry-specific 
workers and communities of color—will experience indirect and cascading amenity impacts from climate 
change that can drive migration either from or into specific regions.394,396,398

There are multiple examples of how leveraging community knowledges can result in successful adaptation 
outcomes; however, the bulk of this research is specific to Tribal communities.251,399,402,403,404,408,409,411 There is 
emerging research that documents how other types of local knowledge and community values can drive 
climate action.412,413

Major Uncertainties and Research Gaps
Generally, the social science research within the Northwest is still developing and strengthening under-
standing of the connections between climate change and regional sense of place and heritage. Therefore, 
there are still many uncertainties and research gaps. This includes understanding social and economic 
responses to extreme events or repeated exposures to climate hazards, how these responses drive 
intra-regional migration, and how amenity migration can lead to cascading effects of displacement of other 
place-based communities (e.g., communities that strongly identify with specific industries, such as timber 
or fishing). There is also uncertainty in motivators for climate action by institutions. While some research is 
available on the social and political dimensions of climate action, including many case studies, the evidence 
base is nascent.

Description of Confidence and Likelihood
Research on climate change impacts to regional amenities, heritage, and sense of place varies by place, 
amenity, culture, and place. However, a common theme across the evidence base is that climate change is 
disrupting these regional values and cultures. Accordingly, the authors have high confidence that climate 
change is affecting regional amenities, heritage, and sense of place. Additionally, the authors have very high 
confidence that climate change is affecting place-based communities, such as Tribes and natural resource–
based communities, given the breadth of regional and national research on these disproportionate impacts. 
Extensive scholarship highlights how integrating local and Indigenous Knowledges can support community 
resilience to climate change. However, there is limited research on how local heritage and values, such as 
environmental or sustainability values, can lead to climate adaptation and mitigation actions. Therefore, 
the authors have medium confidence that regional heritage and values can spur climate action to ensure the 
persistence of heritages, cultures, and amenities across the Northwest. 
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