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Dedication

We dedicate this chapter to the memory of our friend and colleague Brad Reed. Brad served as a coordinat-
ing lead author for the Land Cover and Land-Use Change chapter before he suddenly passed away. He made 
groundbreaking contributions to the chapter by setting up the chapter team and chapter structure. Brad 
was well respected throughout the USGS and the broader scientific community and was a close friend and 
colleague to many. He was involved in a number of research endeavors, including mapping global land cover, 
characterizing phenology from Earth observation data, and assessing biological carbon sequestration for 
the US. Brad was a pioneer in the fight against global warming and a strong advocate for the conservation 
of Earth’s natural resources. A leader in the land-change science and Earth observation communities, Brad 
made great efforts to tackle society’s most urgent issues.
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Introduction
As Earth’s climate changes, many critical aspects of the land system are at risk. “Land system” refers to 
both land cover (the physical organization of the land surface) and land use (the intentional ways humans 
interact with the land). Land system here also refers to the physical and ecological functions of land and 
changes in organization and function over time. Escalating concerns about how climate and global environ-
mental change impact land systems and ecosystem sustainability have driven extensive research efforts to 
understand these complex interactions.1,2,3,4,5 This chapter considers three broad categories describing the 
value of land systems to society and risks associated with climate change: 1) goods and services provided 
directly by land systems, 2) resilience of land systems in the face of disturbance, and 3) availability of options 
for future land use.

Analysis of these topics depends in part on reliable descriptions of historical and current land cover and 
land use. Satellite remote-sensing platforms and ground-based training data provide records of past and 
current land cover over the United States on a yearly basis (Figure 6.1).6,7,8 Land-cover changes are caused 
by humans and ecosystem processes, with compounding effects from climate change, and are unevenly 
distributed in space and time. Some areas experience frequent land-cover changes from natural or human-
caused disturbance (Figure 6.2), while other areas show progressive shifts in land cover, for example with 
the expansion of developed areas (Figure 6.3). While broad land-cover categories are relatively stable 
through time when aggregated to the national scale, varying by less than 10% from their 1985 values over the 
period 1985–2020, modest multidecadal changes within land-cover categories are still evident (Figure 6.4). 
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Present-Day Land Cover

The United States is characterized by complex spatial distributions of developed, managed, and natural 
land-cover types. 

Figure 6.1. Data shown here are from different sources and for slightly differing time periods: (a) contiguous US 
from Land Change Monitoring, Assessment, and Projection [LCMAP] data for 2020; (b) Alaska from the Nation-
al Land Cover Database for 2016; (c) Hawaiʻi from LCMAP for 2019; and (d) Puerto Rico from Coastal Change 
Analysis Program data for 2010. Developed land cover is clustered around urban centers, croplands dominate 
the central contiguous US, and managed and natural forests, grasslands, and shrublands are widely distributed. 
Figure credit: Oak Ridge National Laboratory and USGS.
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US Land-Cover Conversions, 1985–2020

Land-cover change can result from development, forest management, wildfire, and other causes. 

Figure 6.2. Superimposed on the complex mosaic of land-cover types are patterns of land-cover change that 
vary among regions. The number of land-cover conversions is shown over the period 1985–2020. A conversion 
is defined for each LCMAP (Land Change Monitoring, Assessment, and Projection) 30 m x 30 m grid cell as a 
change between years from one primary land-cover category to another. The primary land-cover categories are 
as follows: developed, cropland, grass/shrub, tree cover, water, wetland, ice/snow, and barren. The frequency 
of conversion depends on multiple interacting factors. Development drives expansion of urban centers (e.g., 
around Columbus, Ohio). Forest management causes multiple land-cover conversions between forest and 
non-forest categories over decadal timescales while maintaining a consistent land use (e.g., around the Red 
River). Wildfire can cause large and long-lasting changes in land cover (e.g., in the Yellowstone region). The 
warming climate influences land-cover change by impacting development patterns, harvest recovery dynamics, 
and wildfire frequency and intensity. Figure credit: Oak Ridge National Laboratory and USGS.



Fifth National Climate Assessment

 6-8 | Land Cover and Land-Use

Expansion of Developed Land Cover

Increased development decreases natural and managed land cover. 

Figure 6.3. Continuing expansion of development into vegetated land changes the array of climate-related risks 
to land system goods and services (KM 6.1), land system resilience (KM 6.2), and future land-use options (KM 
6.3). Land-cover changes from 1985 to 2020 are shown for three urban areas: Denver, Dallas/Fort Worth, and 
Atlanta. Figure credit: Oak Ridge National Laboratory and USGS.
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US Average Land Cover and Land-Cover Change

Developed land is increasing, while land with tree cover is on the decline. 

Figure 6.4. Grassland, shrubland, cropland, and tree cover make up a large majority of the US land cover (a), and 
the area of these broad land-cover types changes relatively slowly over time when aggregated over the contigu-
ous US. When expressed as a percentage change from the total land area for each cover type relative to values 
in 1985 (b), developed land has the largest increase through 2020. The area with tree cover has been declining 
since the mid-1990s, while the area of cropland declined through about 2010 and increased again through 2020. 
Figure credit: Oak Ridge National Laboratory and USGS.

Key Message 6.1  
The Goods and Services Provided by Land Systems Are Threatened by Climate Change

Climate change has increased regional intensity and frequency of extreme rain, droughts, 
temperature highs, fires, and urban floods (high confidence), posing increased risks for roads 
and other infrastructure, agricultural production, forests, biodiversity, carbon sinks, and human 
health (high confidence). Climate-driven increases in wildfire extent and intensity are threat-
ening the ability of some western forests to provide valued goods and services (high confi-
dence). Climate change has disrupted the ways that people interact with the landscape for 
spiritual practices, recreation, and subsistence (high confidence). 

Infrastructure, Public Safety, and the Built Environment
People expect land to provide a solid and permanent footing for infrastructure, public safety, and the built 
environment. Climate change threatens this in numerous ways, including increases in erosion, permafrost 
thaw, slope failure, fire, flooding, and shoreline retreat. Land-use changes themselves can interact with 
these climate impacts in complex ways (KM 6.2).

As sea levels rise, coastal infrastructure is increasingly exposed to risks of flooding and wave action from 
storm surges and nuisance flooding during high tides, with low-income coastal communities facing greater 
risks due to fewer resources for response (KMs 9.2, 23.1). The Atlantic and Gulf Coasts are particular-
ly vulnerable to high tide flooding.9 Decadal-scale variability in Great Lakes water levels drives shoreline 
erosion (KM 24.5). Increases in the magnitude and frequency of heavy rain in a warmer climate heighten 
the risk of damage from river flooding, especially where infrastructure for water storage, treatment, and 
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transfer becomes overwhelmed. Increased storm rainfall puts roads and buildings at greater risk of damage 
by landslides.10 For example, Hurricane Maria, a Category 4 storm in 2017, caused substantial damage and 
fatalities in Puerto Rico, as well as more than 70,000 landslides.11 

Warming of colder regions such as Alaska presents significant risks. Damage to roads and the Trans-Alaska 
Pipeline System is occurring due to ground destabilization as permafrost thaws.12,13 As steep, rocky terrain 
warms and thaws, rockfalls can increase,14 and as tidewater glaciers retreat, newly destabilized slopes in 
front of glaciers can collapse into water, causing potentially hazardous tsunamis.15,16

The USGS17 provides emergency assessment of postfire debris-flow hazards (Focus on Western Wildfires). 
Fire and postfire debris flows increasingly threaten infrastructure and public safety as a warming climate 
and increased drought raise the risk of large, intense fires.18,19,20,21 Notable among recent examples was 
the debris flow following the Thomas Fire in Southern California, which killed 23 people, damaged 558 
structures, closed a major highway for 13 days, and caused more than $1.15 billion in damages (in 2022 
dollars; Figure 6.5).22,23 Risks to water supply and quality continue for years after a fire, as erosion washes 
excess sediment and pollutants downstream,24 shortening the lifespan of water-storage reservoirs.24,25,26 
Sediment production is projected to double in one-third of western US watersheds by 2050 due to 
increased fire and extreme rain.26

Damage from Postfire Debris Flows

Postfire debris flows threaten public safety.

Figure 6.5. Photos show property destroyed by postfire debris flows in Montecito, California, caused by intense 
rain on January 9, 2018, falling on areas burned by the Thomas Fire in the previous month. Both contributing 
events—a large wildfire and extreme rain—are projected to become more frequent with climate change. Photo 
credits: Jason W. Kean, USGS.

The Southwest faces additional challenges to infrastructure and public health and safety from increased 
airborne dust,27,28,29 which can carry human disease and result in traffic accidents.30,31 Vegetation loss during 
drought can cause marginally stable land to transition to actively migrating sand dunes, some of which 
damage buildings and roads.32,33
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Agriculture: Crops and Rangelands
Land provides essential services by supporting the production of food for people, feed for animals, and 
forage for wildlife. Climate change has led to increased extremes of both temperature and precipitation, 
with increased risks to crop yield (KM 11.2) and associated impacts on land-cover and land-use change 
(LCLUC). Crop yields in the US continue to increase but are subject to large year-to-year fluctuations driven 
by environmental stresses34,35 and have become increasingly sensitive to water availability over the past two 
decades.36 Yield loss associated with warming has resulted primarily from drought, with heat stress playing 
a secondary role.37 Flooding also causes crop damage; during 1981–2016 in the US, inundation-induced yield 
loss was comparable in magnitude to that caused by extreme drought.38 

In arid and semiarid lands of the Southwest, livestock overgrazing, oil and gas extraction, and off-road 
vehicle use amplify the effects of warming39 by damaging vegetation and biological soil crusts,40 further 
increasing dust production. The spread of invasive plants exacerbates this transition, leaving landscapes less 
adaptable to warming.41 Water extraction by humans lowers water tables, stressing plants, drying lakebeds, 
and increasing dust production. These factors, together with the warming-induced drought, reduce the 
productivity and carrying capacity of US rangelands (KM 28.3). 

Forests and Biodiversity
Forests provide critical value to society by supplying a wide range of wood products, protecting water 
quality, supporting biodiversity, and providing recreational opportunities and spiritual and cultural 
benefits. Forest land cover can reduce warming locally by providing increased evaporation and shade.42 The 
effects of land-use change on forest goods and services, including the value of biodiversity, are still being 
explored.43,44,45 In some cases, forest management can increase biodiversity and offset regional losses due 
to urbanization, but future losses of biodiversity due to climate change may be greater than reforestation 
offsets.46 

Multiple interacting factors drive changes in goods and services from forest lands, including development, 
abandonment and expansion of agricultural land, and incentives for reforestation and conservation.47 Mixed 
land uses such as agroforestry are expected to increase soil water infiltration compared to agriculture 
alone, providing protection against warming, drought, and soil erosion due to overland flow during extreme 
precipitation events.48 Forest land-use transitions intended to mitigate climate change must be carefully 
assessed to prevent unintended consequences, such as net losses of carbon, biodiversity, habitat, soil 
quality, or other ecosystem services when converting mature forest to bioenergy crop cultivation (e.g., 
Harper et al. 201849). 

Natural and Managed Carbon Sinks
Land ecosystems provide an important service to society by sequestering a fraction of the carbon emitted 
to the atmosphere through fossil fuel combustion and land use. The net carbon balance at any location is 
the result of multiple simultaneous losses and gains related to plant growth and organic matter decompo-
sition (KM 8.1), historical and current LCLUC, and climate conditions including atmospheric carbon dioxide 
(CO2) concentration and local rates of nitrogen deposition (Figure 6.6).50 Northern Hemisphere forests are 
important carbon sinks (KM 7.1).51 Boreal and tropical forests are both globally important carbon sinks, and 
since 1992 the boreal forest sink has been increasing in importance relative to the tropical forest sink.52 
Other ecosystems, such as grasslands,53 wetlands,54 and some agricultural systems (KM 11.1)55 also contribute 
to the carbon sink, with complex and uncertain interactions with management actions. 
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Carbon Flux Response to Land-Cover and Land-Use Change

Changes in land cover and land use affect the fluxes of carbon taken up on land or released into the atmosphere, 
with impacts on these fluxes lasting for decades to centuries. 

Figure 6.6. Land-cover or land-use changes can trigger complex sequences of carbon release and uptake. The 
example shown here illustrates a single idealized land-use event and the multiple impacts of such an event on 
carbon release and uptake fluxes. Net carbon flux from land use (red line) depends on time since disturbance, 
with climate change impacting all the component fluxes. Component fluxes include immediate losses from land 
clearance and fire (orange line), fast release of carbon from decomposition of forest products such as paper 
(blue-gray line), slow release from forest products such as lumber (brown line), and initial decomposition of litter 
and soil organic matter followed by carbon uptake during regrowth (dark gray line). The processes represent-
ed here typically span multiple decades to a century or more. In this illustration the net carbon flux (red line) 
eventually returns to zero, indicating that the influence of a single event has a finite period of impact on fluxes. 
During this period of impact, accumulated carbon losses (summed area of the red line above the zero flux level) 
can differ from accumulated carbon gains (summed area of the red line below the zero flux level), resulting in 
new steady states with either more or less total carbon storage than before the land-use event. Multiple events 
such as this can occur over time at a single location and can overlap each other in time, leading to even more 
complex patterns of fluxes. Figure credit: Oak Ridge National Laboratory. 

While highly variable from year to year, the fraction of emissions taken up by land ecosystems has remained 
relatively stable on decadal timescales (Box 7.2). Recent evidence suggests that plant response to increasing 
atmospheric CO2 is the dominant factor driving the land carbon sink at global scales.56,57 A significant part 
of the land sink is also attributed to recovery following natural disturbances and legacy effects of past 
LCLUC.58,59,60,61 
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Intrinsic Value
Impacts of climate change are transforming landscapes in ways considered intrinsically detrimental. 
Communities with especially strong ties to place and local ecosystems, including but not limited to Tribal 
and Indigenous groups, may suffer declining cultural and spiritual connections with the land through these 
changes (KM 15.2),62 such as through the drying of formerly perennial springs and streams that have 
spiritual significance63 or through reduced opportunities for traditional harvesting of plants that decline 
as environmental conditions change. In central and northern Alaska, traditional methods of hunting on 
sea ice have become less feasible, and destabilization of thawing permafrost jeopardizes long-occupied 
communities (KM 29.3).64,65 Subsistence and recreational fishing are reduced by ecosystem changes, some 
of which are climate driven and will worsen with additional warming;66 for example, decreased salmon 
abundance has profound negative effects on many Tribes in the Northwest (KM 27.1).67 Other recreational 
land uses are limited by the changing seasonality of river flows, loss of ice and snow, and loss of access to 
areas recently burned.

Key Message 6.2  
Changes in Climate and Land Use Affect Land-System Resilience

Changes in climate and land use affect the resilience of land ecosystems and thus the fate 
of the services they provide (high confidence); for example, increasing drought reduces the 
ability of forests to store carbon. Climate and land-use change interact, and these interac-
tions present challenges as well as opportunities for maintaining ecosystem resilience (high 
confidence).

The Value of Resilience
Ecosystem resilience—defined here as the capacity of a land system to respond to disturbance by resisting 
damage and/or recovering quickly, maintaining its essential structure and function—determines the 
persistence of services amid LCLUC. Disturbance is defined here as any discrete event (e.g., fire, flooding, 
drought, wind, geological hazard, pathogen, insect infestation, etc.) that occurs outside the range of natural 
variability (e.g., vegetation phenology, climate interannual variability, etc.) of the land system.68 Management 
also impacts land systems, with the potential to both increase or decrease resilience. Resilience enables 
natural and built systems to maintain the continued delivery of goods and services in the face of changes. 
Climate change is affecting ecosystem resilience, triggering responses such as shifted distribution of species 
and reduced biodiversity (KM 8.2),69,70 changed timing of biological processes,71,72 altered success of existing 
land uses,73,74 and lowered ability of systems to resist and recover from land-use activities and natural 
disturbance.75 Ecosystems in the US have experienced increases in average temperature and extreme heat,76 
increased drought,77 and increased intensity and frequency of extreme precipitation.78,79 Changes in pre-
cipitation characteristics and warming have driven an increase in aridity in much of the United States,80,81 
with lasting impacts on ecosystems.82 Land use and management affect ecosystem resilience and interact 
with climate change to determine the structure and function of the land system (KM 20.3).83,84 The fact 
that human decisions can influence resilience provides opportunities for climate mitigation (Ch. 31) and 
adaptation (KM 6.3; Ch. 32) and is a foundation for nature-based solutions to climate change,85 as well as 
an opportunity to improve resilience through management actions informed by Indigenous Knowledge 
(KM 16.2).86
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Interactions Between Climate Change and the Land System and Effects 
on Resilience
Climate change and land use individually and interactively affect land systems, the services they provide to 
humans, and the resilience of ecosystems. Climate change alters landscape characteristics and management 
outcomes, which drive changes in land use and/or land cover (Figure 6.7). Land use itself impacts the land 
system, with potential to both increase and decrease resilience. Land use and land cover help determine 
climate via effects on carbon, water, and energy exchange with the atmosphere. 

Climate change affects ecosystem resilience, structure, and function. For example, tree mortality events 
have resulted from drought and/or high temperatures in the temperate and boreal forests of western North 
America,87,88 and widespread death of many tree species has been linked to climate change through wildfire 
and insect attack.89,90 Warming-induced drought is causing widespread mortality of forests in the Southwest 
US.91 Increased tree mortality and impaired regeneration decrease the resilience of forests (KM 7.1).92,93

Increases in average temperature and altered precipitation patterns cause changes in species 
composition,92,93 such as encroachment of shrubs into grasslands94 and invasion by exotic grasses into 
rangelands, drylands, and forests.41,95 Exotic grass invasion increases fuel loads and the ability of fire to 
move across the landscape, often resulting in large increases in fire risk.41,96,97 By reducing fuel moisture, 
hotter and drier climates lengthen the wildfire season and lead to larger, more severe fires.20,21 Increased 
wildfire frequency and severity can result in the loss of soil organic carbon through combustion98 and 
postfire erosion.24 In boreal systems, increased fire frequency may lead to changes in forest type,99 while 
streamflow changes and permafrost thaw may trigger transition from peatland to forest.100,101 Interactions 
between fire, climate change, and human development are multifaceted and include not only warming-in-
duced increases in wildfire but also management actions to reduce wildfire fuel, the effects of fire on human 
populations, postfire recovery, and fire-induced changes in forest type (KM 8.1). Drought, wildfire, and 
unsustainable land-use practices cause land to lose productivity, which may trigger desertification in arid 
and semiarid regions.

Changes in land cover influence local and regional climate through both biogeochemical and biophysical 
pathways. The biogeochemical effects of vegetation loss, including both immediate CO2 emissions and 
missed capacity for carbon sequestration (KM 6.1), have a warming impact at the planetary scale.102 
Vegetation loss causes immediate changes to local and regional climate through biophysical effects (e.g., 
Jiang et al. 2021;103 Wang et al. 2016104), including exposed ground or snow (cooling the surface by reflecting 
more sunlight), reduced evapotranspiration (warming the surface and reducing moisture supply for rainfall), 
and a smoother surface (warming the surface by reducing heat loss to the atmosphere). The net impact of 
land-cover change on local climate depends on season, background climate, and vegetation type. Across 
the United States, forest disturbance or forest loss during the 2000s and 2010s caused a net local warming 
at both evergreen and deciduous sites in arid/semiarid, tropical, temperate, and boreal zones.105,106 This 
occurred because warming from the loss of transpiration more than compensated for the cooling effects 
of the more reflective land surface following forest loss; exceptions were found during boreal winter at 
high latitudes where strong cooling resulted from high albedo of exposed snow.105,107 Similarly, climate 
over forests is cooler than the surrounding croplands and urban areas, and the increase of forest cover 
following agricultural abandonment during 1920–1990 is connected to the observed cooling trend in the 
Southeast US.108

Indirect interactions also have impacts on US ecosystem resilience.1,109 Land-use decisions that consider the 
interactions of climate change and management can maintain and promote ecosystem resilience.83,110 For 
example, the thinning of some western forests that are experiencing drought increases the resilience of the 
forests to future trends of warming and drying.111 
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Changes in climate and land use offer opportunities for mitigation and adaptation, such as post-disturbance 
restoration of lands using climate-adapted species, which could increase biodiversity and resilience to 
climate change.112 Increasing land-based carbon storage may be achieved by shifts in land management (KM 
6.3), for example by afforestation (Ch. 7), altered grazing practices (Ch. 11),53 modified crop management (Ch. 
11), conserved agricultural lands,113 active restoration of disturbed lands,114 and the use of prescribed fire to 
avoid wildfire.115 

Land, Climate Change, and Ecosystem Resilience 

This figure shows the primary land-use and land-cover changes, their interactions with climate, and impact on 
ecosystems. 

Figure 6.7. Land-use and land-cover changes interact with climate change, leading to lasting impacts on ecosys-
tem services and resilience. Black arrows represent land conversions, and gray arrows represent impact or feed-
back processes supported by existing literature. Figure credit: University of Connecticut, USDA Forest Service, 
USGS, and Oak Ridge National Laboratory.

Land System Resilience Risks Associated with Increasing Development
Among all classes of land-cover change in the contiguous United States between 1985 and 2016, the largest 
net change in any class was an estimated gain of 50,660 square miles (131,209 km2) of developed lands, at 
an average rate of 1,634 square miles (4,233 km2) per year, primarily at the expense of forest and agricul-
tural land,116 a trend that continues to the present (Figure 6.4). Urban heat island effects exacerbate the 
impacts of warming on heat hazards, which disproportionately harm low-income communities (KM 12.2; 
Figure 12.6; App. 4). Warming-induced increases in precipitation extremes lead to higher flash flood risks, 
with especially devastating effects in urban regions where impervious surfaces cannot absorb rainwater. 
Although widespread increases in intense rain are evident,117 river flooding trends are not consistent-
ly apparent across the US at present (KM 4.2);118 however, in urbanized basins, as urban development 
expands, the size of flood peaks increases.117,119,120 A resilient urban infrastructure, therefore, must be able to 
accommodate increased runoff from extreme storms (KM 12.2). Urbanization, through both urban land cover 
and increases in human-caused fine particulate matter, can alter atmospheric convection and precipitation, 
leading to stronger storms and more intense precipitation.121,122,123,124 Urban heat islands reduce low clouds, 
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which can increase plant water stress and possibly play a role in increasing wildfire risk, particularly in the 
wildland–urban interface.125,126

The adverse effects of urbanization on climate and ecosystems can be partly alleviated through sus-
tainable practices designed to improve urban resilience. Urban greenspace (e.g., urban forest, farming, 
gardening) can mitigate the urban heat island effects and flooding risks127,128,129 with varying degrees 
of effectiveness. While urban vegetation sequesters carbon during the growing season, the annual net 
carbon flux is uncertain.130,131,132 Additionally, urban farming brings food security benefits, with yields 
comparable to conventional agricultural yields.133

Increasing energy demand, combined with new extraction technologies, has resulted in an average of 
50,000 new oil and gas wells established per year throughout central North America since 2000.134 
Infrastructure for horizontal drilling and high-volume hydraulic fracturing has transformed millions of 
acres into industrialized landscapes, with reductions in ecosystem resilience, biodiversity, and the land 
carbon sink (e.g., Allred et al. 2015134). Reclamation of wells could become less successful with cli-
mate change.135 The efficacy and resilience of renewable energy systems are expected to be affected by 
climate change in ways that will vary with generation type and location 136 and may strain the energy 
system (KMs 5.1, 5.2, 5.3). 

Land System Resilience Risks Associated with Changes in Agriculture
After declining for multiple decades, cropland area in the United States increased at a rate of approximate-
ly 1,500 square miles (approximately 4,000 km2) per year during 2008–2016 (Figure 6.4b),137 attributable to 
increased domestic demand for corn ethanol and global demand for agricultural commodities as well as 
changes to conservation and crop insurance programs, interest rates, and possibly climate change–driven 
crop migration.138,139 New croplands tend to occupy areas with marginal biophysical characteristics (e.g., 
erosive soils, nutrient deficiency, climatic stress) but displace grasslands and conservation easements 
that are higher-quality wildlife habitat than the remaining natural lands.137 Expansion of agricultural area 
in the north-central United States has led to fragmentation of the remaining grassland, which limits the 
dispersal and population of native species (e.g., Wimberly et al. 2018140) and is expected to reduce ecosystem 
resilience. Conversion of grassland to cropland also contributes to carbon emissions from loss of soil 
organic carbon (KM 11.1).141 The recovery of plant biodiversity, productivity, and soil carbon following agri-
cultural abandonment is slow,142 but the potential recovery of carbon in lands released from agricultural 
use is substantial, as has been shown by the large soil carbon gains made in land under the Conservation 
Reserve Program (KM 11.1).113 Soil carbon increases, as well as increases in other ecosystem services, can be 
accelerated through activities such as deliberate revegetation with woody and herbaceous perennials.143

Agricultural extensification influences precipitation, with the direction of change depending on the region 
and the type of natural land cover prior to its conversion to cropland. For example, replacing grassland 
with cropland over the Great Plains can cause summer precipitation to increase.144 Studies suggest that, 
in addition to increased area, intensification and irrigation are major causes of the observed increases in 
precipitation and decreases in temperature in the central US and Midwest145,146,147,148—changes that provide 
potentially more favorable conditions for crops and surrounding ecosystems. Land conversion to cropland 
without intensification was not associated with the observed cooling.146
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Key Message 6.3  
Mitigation and Adaptation Priorities Will Increasingly Constrain Future Land-Use Options

The future of land use in the United States will depend on how energy and agricultural tech-
nology evolves, how the climate changes, and the degree to which we prioritize climate mit-
igation and adaptation in land-use decisions (high confidence). US cropland area had been 
declining but has rebounded somewhat over the last 1–2 decades (high confidence). Future 
cropland needs will depend on uncertain factors such as agricultural technology improve-
ments, dietary shifts, and climate change impacts (medium confidence). Decarbonization 
will require a continued expansion of solar and wind energy generation and transmission 
infrastructure (very likely, high confidence) and may involve large land-use changes toward 
land-based mitigation measures, including reforestation, other natural climate solutions, and 
bioenergy crops (low confidence).

Future Land-Use Scenarios
People value the ability to choose among multiple land-use options, although the ability to make these 
choices is not always experienced equitably across society (KM 20.3). There are increasing and competing 
demands for future land-use changes to support agriculture, housing, and infrastructure; to contribute to 
climate change mitigation and adaptation; and to conserve and possibly restore natural lands for biodi-
versity, resilience, and spiritual or recreational use. Scenario analysis is used to explore different climate 
mitigation “storylines,” known as Shared Socioeconomic Pathways (SSPs; Table 3 in Guide to the Report), 
for how global land use, energy systems, and greenhouse gas emissions might evolve together under a set 
of standardized background driving forces such as changes in population, technology, and governance.149,150 
Land-use representation within the range of SSPs includes differences in land-use regulation, land produc-
tivity, trade, land-based mitigation and adaptation (Figure 6.8), and food/diet choices, along with a corre-
sponding range of land-use trends that result from these drivers (Figure 6.9).
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Mitigation and Adaptation Value of Future Land-Use Choices

Future land-use choices have implications for climate mitigation and adaptation. 

Figure 6.8. Future land-use choices can contribute to mitigating global climate change by reducing emissions or 
storing carbon (green), help individuals or communities adapt to the effects of global change (blue), or simulta-
neously support both mitigation and adaptation (green-blue), as shown in the upper-right quadrant. Flexibility 
in land use for mitigation and adaptation depends on background factors, including agricultural technology 
improvement, income growth, food waste reduction, and international cooperation. Alternately, indiscriminate 
land use change can lead to additional carbon emissions or maladaptation (lower-left quadrant). Many of these 
land-use choices are discussed elsewhere, including Key Messages 7.3 (forest adaptation), 9.3 (coastal adapta-
tion), 11.1 (agricultural adaptation), and 12.3 (urban trees), as well as Box 32.2 (carbon dioxide removal). Figure 
credit: NASA, University of Maryland, and Oak Ridge National Laboratory.

Future land uses in the United States have been explored under several SSPs and at multiple spatial scales.151 
Future land use within the SSPs (Figure 6.9) is projected to involve substantial departures from historic 
trends (Figure 6.4), with determinants of change and resulting land-use patterns varying spatially and 
with time, based on multiple drivers including land management, demographic change, and ecological 
shifts (e.g., Richter and Bixler 2022 152). Many scenarios assume continued agricultural productivity 
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increases, allowing the total area of cropland for food production to remain stable or decline despite the 
increasing global population.150 Future land-use changes that limit global warming include reductions in 
grazing land associated with lower-animal-calorie diets and climate mitigation via reforestation or forest 
expansion. In addition, to offset fossil fuel use in other sectors, an often-dramatic expansion of bioenergy 
crops (producing nonedible plant material) is included in many scenarios. Large increases in urban area 
and reductions in forest area often accompany scenarios that involve greater levels of climate change.153 
Although these scenarios are useful for exploring different possible land-use futures at the aggregate scale, 
they do not quantify the likelihood of different land-use changes.

Scenario-Based Future Land-Use Trends

Future land-use scenarios describe a wide range of possible land-use changes in the United States.

Figure 6.9. Future land use in the 50 US states across eight different Shared Socioeconomic Pathways (SSPs) 
depicts increases in urban area, stability or decline in food crop area, and mixed outcomes for remaining land-
use types, with large divergence among scenarios. (Data for the US-Affiliated Pacific Islands and US Caribbean 
are not included due to the spatial resolution of the underlying data source.) Colored bars show the range of 
land-use areas across all scenarios, and dashed lines indicate year 2000 values for comparison. Black symbols 
illustrate results for select scenarios of low emissions and high reforestation (SSP1-1.9 from the IMAGE model), 
moderate emissions with large nonedible bioenergy crop growth (SSP4-3.4 from the GCAM model), and high 
emissions (SSP5-8.5 from the REMIND-MAgPIE model), while gray symbols represent remaining scenarios. The 
large expansion of bioenergy crops is often taken from natural grasslands, which are not represented in this 
figure. Figure credit: University of Maryland, Oak Ridge National Laboratory, and NASA.
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Future Agricultural Land Use 
Flexibility in future land-use decision-making may be limited by agricultural land needs. Climate change 
is estimated to be slowing the rate of crop yield increases globally;154,155 future land use will depend on the 
ability of the agricultural sector to adapt. Modeling results indicate that climate change–driven regional 
crop disruptions may emerge within 2–3 decades,156 although such disruptions would be minimized with 
the adoption of adaptation and intensification measures such as supplemental irrigation and updated crop 
varieties.157,158 There is also evidence of agricultural system adaptation through migration of crop cultivation 
ranges into more favorable climates in the United States and globally.159 

Individual farmers and landowners experience these changes in the context of increased variability in yields 
and income. As much as one-fifth of recent US crop insurance losses can be attributed to climate change.160 
Over time, adverse climate trends might affect the financial viability of current cropping practices and 
create pressure for individual producers to adopt adaptation practices (e.g., earlier planting dates, new crop 
varieties, modified tillage practices)161 or switch crops. Such impacts will disproportionately affect small rural 
landholders (KM 11.3). Some regions are expected to see opportunities for new cropping systems159,162 or for 
increasing the frequency of cropping on a given field.163

Future agricultural land requirements and associated climate feedbacks are sensitive to dietary choices and 
food waste.164 American diets are high in meat consumption, a land-intensive food source, and universal 
adoption of USDA dietary guidelines would lead to a net reduction in the total biophysical land requirement 
for US agriculture.165 Shifting toward diets even lower in animal products—potentially via novel plant-based 
meat substitutes166—could spare additional land and enable restoration of natural ecosystems.167,168 US 
agricultural land futures could also be influenced by a continuation of the reduced household food waste 
observed during the COVID-19 period.169,170

Future Land Use for Mitigation
Mitigation scenarios that limit global warming to 1.5° or 2°C (2.7° or 3.6°F) above preindustrial levels 
imply large expansions of renewable energy production, electricity transmission, and land-based carbon 
mitigation (Ch. 32).171 In scenarios of net-zero emissions by 2050, wind turbines may be visible across more 
than 130 million acres, an area greater than Colorado and Wyoming combined (Figure 6.10).172 However, 
individual wind turbines have a small physical footprint, and can be sited in areas of intensive agriculture 
(Figure 6.11).173 While solar farms are more land-intensive than wind- and fossil-derived electricity sources,174 
it may be possible to integrate them into agricultural landscapes in ways that preserve or even enhance 
agricultural production.175 Decarbonizing energy systems will require a multifold expansion in global 
production of key metals and minerals,176 although proposals to build new mines or expand existing mines in 
the United States have often faced intense local opposition.177
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Possible Future Wind and Solar Power Siting

Reaching net-zero emissions will require many new wind and solar projects across the US. 

Figure 6.10. Decarbonization will require an expanded physical and visual footprint of renewable power gen-
eration. Panel (a) shows current and possible future siting of wind and solar generation under a scenario that 
reaches net-zero emissions by 2050.172 Panel (b) is a zoomed in view of the existing Grand Ridge wind and solar 
projects in La Salle County, Illinois and possible future siting zones. Green and pink dots show locations of ex-
isting solar and wind generation, respectively. Light green and light pink shading shows potential future siting of 
utility-scale solar and wind. Figure credit: Oak Ridge National Laboratory, with panel (b) background imagery © 
2023 Landsat/Copernicus, Maxar Technologies, USDA/FPAC/GEO, map data © 2023 Google.
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Wind Power in Agricultural Landscapes

Renewable energy generation can be sited in ways that minimize agricultural disruption. 

Figure 6.11. While wind turbines may be visible over an area of more than 130 million acres under some net-zero 
scenarios,172 the actual amount of land they physically occupy is much smaller. Photo credit: franckreporter/E+ 
via Getty Images.

The purposeful use of vegetation to capture or store additional carbon is one of the largest but most 
uncertain elements in future land-use projections. Many scenarios rely on land-based mitigation 
measures,178 including land-intensive reforestation or carbon-negative bioenergy production to achieve 
carbon dioxide removal (CDR) from the atmosphere,172,179,180 often implying unprecedented rates of land-use 
change.181 Bioenergy is the most land-intensive form of renewable energy,174 although it is valued in 
integrated assessment models for providing fuels for long-haul aviation and freight transport in addition 
to CDR (KM 32.3). Future bioenergy expansion may rely on dedicated cellulosic biomass crops cultivated 
on low-value land to minimize conflicts with existing agricultural production,182,183 with positive or negative 
effects on ecosystem carbon storage depending on previous land use.184 

Existing experience with land-based mitigation measures is limited, and the efficacy of forest carbon offsets, 
agricultural soil carbon enhancement, and first-generation biofuel programs remains controversial.185,186,187,188 
Most of the limited CDR achieved to date has come from forest restoration and management, and current 
CDR deployment plans fall far short of the scale envisioned in many decarbonization scenarios.189 In the 
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absence of such land-based mitigation measures, limiting global warming to below 1.5°C (2.7°F) will require 
even more aggressive emissions reductions190 or breakthroughs in competing technologies such as direct air 
capture of CO2.191

These mitigation trends imply new opportunities for landowners to generate additional revenues from 
leasing land for renewable energy generation or transmission, from government-run conservation payment 
programs, or from private carbon markets. However, these new opportunities also carry risks of conflict 
around conservation and the best use of public lands.

Broader Impacts of Land-Use Choices
Future land-use choices also include adaptations to climate change such as locating infrastructure away 
from potential hazards, strengthening natural ecosystems as buffers to climate extremes (e.g., coastal 
forests and wetlands), and planting trees in urban areas to reduce heat stress.192 Many of these activities 
have mitigation co-benefits (e.g., urban trees also store carbon).193 Efforts to reduce land use–driven 
habitat fragmentation are also expected to decrease the risks of disease transmission from animals or 
insects to humans, as well as pandemics.194,195,196 All components of the food supply system are expected to 
be impacted by future land-use choices and climate change,194 which will be felt unequally across society 
(KM 11.2). Land-use planning in the United States will be determined by many decision-makers, including 
land managers at federal, state, and local levels, as well as private and Tribal landowners, and achieving 
consensus over future land-use decisions is expected to be challenging.197
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Traceable Accounts
Process Description
The chapter lead (CL) and coordinating lead author (CLA) developed a list of relevant topics and the 
expertise needed to represent those topics in the assessment process. The CL and CLA reviewed a list of 
nominated authors, which included information about affiliation and expertise. The CL and CLA identified 
potential chapter authors from that list based on their knowledge of the field, their expertise in the topical 
areas, and their contribution to the diversity of the author team in terms of affiliations, gender, and race. 
Invitations were sent and updated as necessary to adequately cover the needed expertise.

All meetings of the author team were virtual, except for the all-author meeting held in Washington, DC, in 
April 2023. Consensus was built during weekly meetings of the full author team, with candidate content 
developed by author sub-teams through additional weekly meetings. All authors participated in developing 
and conducting a public stakeholder engagement workshop, and all authors participated in reviewing and 
responding to public comments.

For development of candidate text for each Key Message, the authors discussed the key topics that should 
be addressed based on their assessment of the literature, expert knowledge, and input from agency and 
stakeholder meetings. The authors then assigned topics according to expertise and performed a literature 
review to evaluate and synthesize information regarding land use and land-cover change, climate change, 
and related ecosystem controls. Based on this review, they developed Key Messages, central points, and 
examples to communicate the issues, challenges, and opportunities related to land system goods and 
services, land system resilience, and future land-use options.

Key Message 6.1  
The Goods and Services Provided by Land Systems Are Threatened by Climate Change

Description of Evidence Base
Land-cover and land-use datasets for the US are detailed and reliable when considering a relatively small 
number of land-cover types and land-cover or land-use transitions, although the best available data for 
different regions (contiguous US, Alaska, Hawai‘i, and Puerto Rico) cover slightly different time periods and 
use different though related methods.

There is consensus that more extreme rain will cause more landslides in a warmer climate, but the spatial 
distribution of anticipated future effects has not been resolved with much certainty; Gariano and Guzzetti 
(2016)10 provided a synthesis of many studies that, in total, support these interpretations. Some individual 
mass-movement events have been attributed directly to climate change, but many landslides are caused 
more directly by factors without a clear link to a warming climate, such as slope oversteepening (by human 
construction) or local soil, bedrock, and hydrologic conditions. A broad literature base supports these 
inferences. The link between climate and slope-failure hazards, including the characteristics of rainfall, 
terrain, and burn severity that contribute to postfire debris flows (e.g., Kean et al. 201922), is a rapidly 
growing research area.

The literature examining agricultural land practice and connections to climate change is broad and deep, 
covering many cropping and forestry practices in many regions across the US. There is a tendency for 
studies to focus more on small regions than on broad spatial patterns.
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There is a long history of research into the connections between forest land cover and biodiversity, and this 
assessment drew on an extensive body of literature. These systems are complex, and the literature examines 
these connections from many perspectives. 

While the topic of natural and managed carbon sinks on land is addressed by a large body of research, 
predictive understanding of interactions of the land carbon sink with land-use and land-cover change under 
a changing climate is still evolving (e.g., Zhu et al. 201861). 

Major Uncertainties and Research Gaps
Land-use and land-cover datasets with good temporal coverage and detailed spatial information are still 
lacking or highly uncertain for high-latitude regions such as Alaska. Additional observations and synthesis of 
ground-based and remotely sensed data would be required to fill these gaps.

Geographic variation in the two-way interactions between climate change and agricultural practice points 
to gaps in understanding of the detailed mechanisms connecting agricultural practices to long-term 
climate variation.

Relationships between agricultural practice, forestry practice, and climate change in mixed-management 
agroforestry systems have received less attention than traditional cropping or forestry practices. To the 
extent that strong mitigation measures place higher demand on mixed-use systems for both production and 
carbon sequestration, additional effort would be required to fill these research gaps.

Comprehensive assessment of the many component fluxes and processes contributing to net greenhouse 
gas fluxes due to land-use and land-cover change is still an important gap at scales larger than a few 
tens of square miles. Regional and continental-scale studies continue to rely on sparse observations and 
relatively simple assumptions about how different disturbance types, frequencies, and intensities interact 
with ecological communities of vegetation and soil biota to drive long-term net fluxes between land 
and atmosphere.

Description of Confidence and Likelihood 
Based on strong and abundant empirical evidence, there is high confidence that climate change is increasing 
the regional intensity and frequency of extreme events, including rain, droughts, temperature highs, and 
fire. There is likewise a strong theoretical foundation for the attribution of these effects to human-caused 
climate change at present and further evidence that these effects will increase in the future as greenhouse 
gas concentrations rise. The empirical and theoretical basis for attributing changes in flood frequency 
and intensity is also robust, but not as strong as for extreme precipitation, droughts, and fire.21,77 Based on 
abundant documentation, there is high confidence that these changes in weather and climate extremes 
cause risks to infrastructure, agriculture, ecosystems, and human health.

Broad empirical and theoretical understanding provides high confidence that wildfire is a major risk to the 
permanence of land carbon sinks, especially in woody ecosystems that have the potential to transition 
to savanna or grassland under increased fire frequency and/or severity. Other aspects of the net storage 
of carbon on land due to disturbances such as rotational forest harvest, windthrow, insect damage, and 
shifting agriculture are commonly identified as significant sources of uncertainty in estimating global or 
regional-scale carbon budgets.

Based on abundant documentation of climate change impacts on human–ecosystem interactions, there is 
high confidence that these impacts have negative consequences for subsistence, recreation, and spiritual 
practice. Some geographies and communities are more impacted than others, and fine-grained or predictive 
understanding of which communities and practices are most at risk is still being developed.
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Key Message 6.2  
Changes in Climate and Land Use Affect Land-System Resilience

Description of Evidence Base
The adverse impact of climate change (e.g., increased mean temperature, extreme heat, drought) on the 
resilience of land systems is supported by theory and observational studies involving a wide array of 
ecosystems, with overwhelming evidence in the United States coming from ecosystems that are increasingly 
influenced by drought, wildfire, and pests (e.g., Williams et al. 201921). There is also strong evidence for how 
the loss of natural lands leads to degradation of ecosystem services that are slow to recover (e.g., Isbell et al. 
2019142). However, the extent to which different ecosystems may recover or management choices are able to 
maintain or rebuild ecosystem resilience is not well known.

Globally, there is a large body of literature on how land-use and land-cover changes might influence local 
and regional climate, and findings are often region- and scale-dependent. This assessment focuses on 
studies over subregions of the United States, some based on observational data analysis and others based 
on numerical model experiments. Of the observation-based studies, some took a space-for-time approach 
by comparing climate trends over different land types (e.g., irrigated versus rainfed cropland, forest versus 
cropland; e.g., Mueller et al. 2016146), while others were based on observations before and after sudden 
land-cover changes (e.g., Li et al. 2022106). In numerical modeling studies, land-use or land-cover changes 
were imposed over a corresponding subregion (e.g., intensification or irrigation over cropland in the central 
US or Midwest, converting cropland to forest in the Southeast) with experiments designed to distinguish 
the impact of land-use change from the impact of greenhouse gas warming. These studies compared model 
results with observed climate trends to enable the attribution of observed climate phenomena to land-use 
practice or land-cover changes (e.g., Alter et al. 2018145). Findings from these studies are mostly consistent.

Warming-induced intensification of rainfall increases the nitrate leaching from cropping systems to surface 
water and groundwater, which exacerbates the environmental effects of increased fertilizer application. 
Different land-use practices (e.g., no-tillage management versus conventional tillage) may influence nitrate 
leaching, but the impact remains uncertain based on recent literature, which limits the extent of this 
chapter’s assessment on this aspect.

A rich literature base supports the idea that while interactions between climate change, land use, land-cover 
change, and disturbance increase the risks of adverse impacts, they also provide multiple opportunities to 
reduce or lessen those impacts and ensure resilience. 

Major Uncertainties and Research Gaps
The impact of urbanization on precipitation and other storms has been a topic of increasing research 
interest. Studies based on numerical modeling found a clear signal related to the enhancement of storm 
severity and precipitation (e.g., Debbage and Shepherd 2018119). However, observational data show a large 
degree of uncertainty and regional dependence. This is an important research gap. 

Although geographically widespread increases in intense rain are evident, flooding trends are not con-
sistently apparent at present.118 Whether intense rain leads to flooding depends on soil type and land use, 
urban water-conveyance capacity, and how well the urban storm drainage system is maintained.

There are important uncertainties related to interactions between invasive species, disease, and natural 
disturbance. There is some evidence that changes in temperature and precipitation, as well as altered fire 
regimes, may negatively impact the competitive ability of native species, facilitating invasion by pests and 
pathogens (e.g., Ravi et al. 202241). However, the outcomes are variable and seem to depend on multiple 
factors. 
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Research gaps and uncertainties also exist for the interactions of climate change with land-based renewable 
energy. Current research provides inconclusive results across the United States for all technologies.136

Description of Confidence and Likelihood
Based on a large literature base (e.g., Holden et al. 2018;87 Stephens et al. 201893), there is high confidence that 
climate change and climate change–related amplification of disturbance effects have a negative impact on 
ecosystem resilience. 

Studies based on different methodologies (including observational data analyses and numerical model 
experiments) are consistent in suggesting that agricultural intensification and/or irrigation cause cooling 
and the increase of precipitation and atmospheric humidity in the central US during summer; similar 
climate effects were found in fall and winter resulting from the increase of forest cover in the southeastern 
US due to agricultural abandonment. Increased flooding was observed in urbanized basins (e.g., Hodgkins 
et al. 2019120); elsewhere, there is no clear signal of increased flooding risks despite the strong increase in 
extreme precipitation (frequency and intensity). Based on this understanding, there is high confidence that 
climate and land-use change interact and that these interactions present challenges as well as opportunities 
for maintaining ecosystem resilience.

Key Message 6.3  
Mitigation and Adaptation Priorities Will Increasingly Constrain Future Land-Use Options

Description of Evidence Base
The evidence base describing Shared Socioeconomic Pathway (SSP) scenarios is large and well developed, 
having already been used in multiple international studies by the Intergovernmental Panel on Climate 
Change (e.g., IPCC 2022180) and the Coupled Model Intercomparison Project simulations. The “storylines” 
from the SSPs are developed by integrated assessment models (IAMs) into modeled projections of societal 
changes across multiple sectors. These scenarios provide alternative realizations of future societal pathways 
that are consistent with specified climate targets.149,150 As such, they are useful for examining the range 
of possible challenges and changes facing our society over the rest of this century, although they do not 
provide predictions or probabilities of future trends.198 

The Land-Use Harmonization 2 (LUH2) dataset provides a spatially explicit downscaling of the subset of SSP 
results used for the Scenario Model Intercomparison Project,199 harmonizes them with historical land-use 
reconstructions, and provides a consistent data input for Earth system model simulations.151 The LUH2 data 
provide global annual gridded (0.25° resolution) data of the fractional area occupied by 12 different land-use 
states, all transitions between those states, and land management data. The Land Change Monitoring, 
Assessment, and Projection (LCMAP) product described in the Introduction is a high-resolution annual 
land-cover dataset. That product complements the National Land Cover Database (NLCD),200 which has 
greater thematic detail but is updated less frequently. 

US agricultural land use in particular is tracked by a variety of surveys (e.g., the Census of Agriculture [CoA]) 
and longitudinal methods (e.g., the National Resources Inventory [NRI]), producing data that can be used to 
calibrate and validate the previously described remote sensing–based datasets.8,137,201 Agricultural production 
is tracked through government statistics (e.g., the USDA National Agricultural Statistics Service), and crop 
yields are evaluated at finer spatial scales through crop insurance programs and combine yield monitors. 
The annual Inventory of US Greenhouse Gas Emissions and Sinks55 estimates emissions from US land-use 
change, using agricultural area data from NRI and other sources.
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Understanding of mitigation-driven land-use changes draws on the large IAM scenario evidence base 
described previously. Additionally, the Princeton Net-Zero America Project172 is among the first to project 
where renewable electricity generation infrastructure might be sited at relatively fine spatial resolution.

Major Uncertainties and Research Gaps
Although human land-use activities have historically resulted in a net source of carbon emissions to the 
atmosphere, there is considerable uncertainty in these, and future, estimates.202

The SSP scenarios and harmonized land-use datasets are generated with a global focus. Although they 
can be analyzed and used for specific regional and national impacts, they are not likely to have US-specific 
levels of detail. In addition, the national-to-regional focus of these scenarios prevents the consideration 
of many societal equity and justice issues. Inequality and governance are included as drivers of land-use 
change in the SSPs, where they are used primarily to address inequality between countries and regions.203 
The SSP datasets used by LUH2 were each produced by a single IAM; it is possible that alternative IAMs 
would represent land-use differently within each SSP, and those potential differences were not explored 
here. There are also very few studies that provide short-term predictive forecasts of national-level land-use 
changes over the next 1–2 decades.204 SSP scenario analyses do not include climate feedbacks to the future 
scenarios, but other studies using coupled human–climate models205 show that climate change is expected 
to modify the future land-use choices society is able to, or desires to, make. 

Future agricultural land requirements will depend on various difficult-to-assess factors such as changing 
dietary preferences and climate change effects on crop yields. While IAM studies typically assume that his-
torically observed rates of crop yield increase will continue into the future, more detailed modeling efforts 
such as the Agricultural Model Intercomparison Project (AgMIP)156 suggest that climate-driven reductions 
in corn yield in the western US may be clearly observable in as little as two decades under pessimistic 
emissions scenarios (SSP5-8.5), for example. The potential of in situ adaptation practices (e.g., adoption of 
different crop varieties or planting dates) to mitigate the severity of climate-driven disruptions is an active 
area of study, but the literature base on climate-driven shifts in crop cultivation range is still very limited.159 
Studies show that dietary shifts away from animal products toward plant products have a large biophysical 
potential for reducing total agricultural land use and supporting natural ecosystem restoration and 
land-based mitigation.165,167,168 The SSP scenarios cover a range of dietary shift assumptions, including a shift 
toward low-meat diets in SSP1 and associated market and trade implications.150 

The efficacy of existing land-based mitigation measures is often debated. For example, estimates of the 
mitigation value of US corn ethanol production diverge significantly187,188 depending on assumed counter-
factual land use in the absence of ethanol production and the degree to which diversion of finite arable land 
might lead to unintended agricultural expansion elsewhere. While remote sensing provides an invaluable 
tool for tracking deforestation, it can struggle to differentiate more subtle land-use changes with similar 
land cover (for example, unmanaged native grasslands, rangeland, pastureland, hay land, cropland–pasture, 
idled cropland, and conservation reserves), making it difficult to distinguish between permanent agricul-
tural expansion versus transient agricultural intensification.206 This ambiguity contributes to the debate 
around the viability and desirability of wide-scale land-based mitigation and carbon dioxide removal (CDR) 
measures in future decarbonization scenarios. 
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Description of Confidence and Likelihood
The land-use consequences of agricultural technology improvement (e.g., per-area crop yields, management 
intensity) and demand for land-based mitigation (including bioenergy and various CDR measures) are well 
explored in SSP scenario analyses.150,205 Other collaborations (e.g., AgMIP) have explored the interaction 
between crop productivity and future climate change beyond what has been possible in integrated 
assessment modeling. Together, these literatures point to the influences of technology, mitigation needs, 
and climate change on land-use futures, hence the high confidence rating.

Primary data on cultivated cropland area and/or total cropland area are available via remote-sensing 
datasets (NLCD and LCMAP), longitudinal studies (NRI), and surveys (CoA). The longer-duration NRI and 
LCMAP datasets support a net decline in US cropland area over the last three and a half decades for which 
data are available, consistent with longer-term land-use records showing a mid-20th-century peak in US 
cropland area.151 All four of these primary datasets are consistent with partial rebound of cropland area 
more recently, although with some disagreement around the starting year (as early as 2001 in NLCD or as 
late as 2012 in CoA) and magnitude of that rebound. Based on the agreement of these different primary 
data sources, there is high confidence of a long-term decline in US cropland area followed by a more 
recent rebound.

The LUH2 future scenarios all show stable or declining cropland use across the range of population growth 
and dietary shifts represented in the SSPs, although these scenario comparisons are not designed to 
represent the likelihood of different futures. Other literature suggests ongoing challenges in maintaining 
agricultural system resilience155 in the face of a changing climate. Thus, continuation of the trend of 
declining land use is given a medium confidence rating, since there is not only evidence for multiple enabling 
preconditions but also key risks that are not captured in most scenario assessments.

The scenario assessment literature is consistent in identifying expanded electricity generation from 
renewable sources (i.e., wind and solar) and more widespread electrification of energy end use as precondi-
tions for decarbonization of the energy sector.171 This is consistent with recent trends of accelerating wind 
and energy deployment driven by the comparatively low cost of these energy sources, as well as policy 
support (e.g., through the Inflation Reduction Act), hence the very likely, high confidence rating. However, 
decarbonization scenarios have been widely criticized for over-reliance on land-intensive, technologically 
immature, or potentially unsustainable land-based mitigation and CDR measures,207,208,209 and a variety of 
alternative scenarios that avoid land-intensive CDR have been developed.190 Considering this, the statement 
about widespread land-use change for land-based mitigation is assigned a low confidence rating. 
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