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Introduction
Our Nation’s coasts support industries, commerce, communities, cultures, traditions, and recreation while 
also providing iconic landscapes and diverse ecosystem services. Observed sea level rise (SLR) and changes 
in the frequency and intensity of extreme storms, coupled with changes in land use and land cover that can 
magnify flood risk, have a significant and demonstrable negative impact on people living and working along 
the coast. Impacts are expected to worsen in the coming decades as SLR continues to accelerate. Observed 
and projected trends vary along our Nation’s coasts (KM 9.1); therefore, consideration of local and regional 
trends is important when evaluating impacts (KM 9.2) and adaptation (KM 9.3).1,2

The number of people living in coastal areas at risk of SLR inundation (permanent inundation by daily high 
tides) or surge- or wave-driven flooding (temporary flooding driven by storm events) is in continual flux.3 
Between 1990 and 2020, the number of people living below high tide elevations plus 3.3 feet (1 m) of SLR 
increased by about 14%–18% to 2.2 million, consistent with continued growth and development.3 Human 
modifications to coastal landscapes, such as seawalls and levees, can exacerbate flood risks and erosion4,5,6 
and affect the ability of coastal ecosystems to naturally adapt.7 

Weather-related disasters continue to increase across US coasts (KMs 2.2, 3.5), with SLR amplifying the 
flooding and impacts to coastal communities. Between 2000 and 2021, 38 tropical cyclones caused over 
$1 trillion in losses (in 2022 dollars) and 6,200 deaths.8 Federal, state, and local actions to reduce these 
losses are underway, yet progress is slow, and substantial wealth inequities, systemically sustained gaps in 
resources and capacity, and past injustices continue to disparately impact frontline communities, including 
Tribes and Indigenous Peoples, rural communities, and lower-income populations (KM 20.1). It is difficult to 
disentangle the vulnerabilities and consequences associated with climate change from histories and racial 
inequities that shaped social–environmental systems that exist today.9 However, climate adaptation efforts 
that embed equity considerations, support environmental justice, and center the local communities may 
have the best chance of success, using adaptation strategies that range from protection-in-place to planned 
relocation.10,11,12 

Increasing weather-related disasters and SLR also increase impacts on coastal ecosystems and natural 
shorelines, resulting in gradual (e.g., inland migration of wetlands) to abrupt (e.g., storm erosion of dunes 
and bluffs) changes that increase flood risks and damages to coastal communities and major infrastructure 
(e.g., highways, railroads, ports, airports, and other critical infrastructure; KM 12.2). The combined impacts 
will require fundamental reimagining of the coast. Protection structures can reduce risks on an interim 
basis; however, many communities and the infrastructure they depend on will need gradual relocation 
to higher ground, which can provide space for coastal ecosystems to adapt (KM 8.1). In some locations, 
coordinated and deliberate coastal relocation, implemented equitably, will be essential to reduce future risk 
to lives and livelihoods (KM 31.1).13,14,15 
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Key Message 9.1  
Coastal Hazards Are Increasing Due to Accelerating  
Sea Level Rise and Changing Storm Patterns

The severity and risks of coastal hazards across the Nation are increasing (very likely, high 
confidence), driven by accelerating sea level rise and changing storm patterns, resulting in 
increased flooding, erosion, and rising groundwater tables. Over the next 30 years (2020–
2050), coastal sea levels along the contiguous US coasts are expected to rise about 11 
inches (28 cm), or as much as the observed rise over the last 100 years (likely, high confi-
dence). In response, coastal flooding will occur 5–10 times more often by 2050 than 2020 in 
most locations, with damaging flooding occurring as often as disruptive “high tide flooding” 
does now if action is not taken (very likely, high confidence). 

Accelerating Sea Level Rise
Global mean sea level is rising at an accelerated rate, with the average rate of about 0.05 ± 0.01 inches per 
year (1.2 ± 0.2 mm per year) over the pre-satellite era (1901–1990)16 nearly tripling to 0.13 ± 0.02 inches per 
year (3.4 ± 0.4 mm per year) during the 30-year satellite era (1993–2022)17 due to thermal expansion from 
warming waters and the growing contribution from melting glaciers and ice sheets.18 Global SLR rates 
further accelerated to 0.17 inches per year (4.4 mm per year) over the last decade (2013–2022), although this 
acceleration may include components of natural variability due to the short time period.19 

To help communities plan for an uncertain future, the US Interagency Sea Level Rise Task Force established 
five future SLR scenarios that span the range of plausible SLR amounts by 2100 using the latest scientific 
consensus from the Intergovernmental Panel on Climate Change (IPCC) and other scientific bodies.2 The 
five SLR scenarios represent the range on a global scale, with projected SLR amounts in 2100 and scenarios 
defined as follows:

• Low, 1 foot (0.3 m) rise in global mean sea level relative to year 2000 baseline

• Intermediate-Low, 1.6 feet (0.5 m)

• Intermediate, 3.3 feet (1.0 m)

• Intermediate-High, 4.9 feet (1.5 m); and 

• High, 6.6 feet (2.0 m) (Figure 9.1) 

The SLR scenarios are downscaled to local and regional levels, considering future changes in land 
elevation, ocean heating and circulation, and Earth’s gravitation and rotation from melting of land-based 
ice. They are constructed directly from the IPCC Sixth Assessment Report (AR6) emissions- and tem-
perature-based projections (App. 3.3)20 but use consistent framing (e.g., Sweet et al. 201721) to support risk 
reduction planning.

Sea levels are rising along contiguous US coastlines faster than the global average, with about 11 inches (28 
cm; likely range of 10–12 inches [25–30 cm]) occurring over the last 100 years (1920–2020) and with about 
half of this rise (5–6 inches [13–15 cm]) occurring in the last 30 years (1990–2020; Figure 9.1).2 SLR rates 
vary across different regions. In the last 30 years, the greatest rise is observed along the US western Gulf 
Coast (about 9 inches [23 cm]), largely due to high rates of land subsidence22 from subsurface groundwater 
and fossil fuel withdrawal.23 About 6 inches (15 cm) of rise is observed along the northeast and southeast 
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Atlantic and eastern Gulf Coasts. Lower rates of rise are observed along the Hawaiian and US Caribbean 
island coastlines (4 inches [10 cm]) and the northwest (2 inches [5 cm]) and southwest (3 inches [8 cm]) 
Pacific coastlines.2

Accelerating Relative Sea Level Rise in the Contiguous US 

Sea level is projected to continue to increase this century by amounts related to future global warming levels.

Figure 9.1. This figure shows accelerating sea level rise (SLR) trends and SLR scenarios along the contiguous 
US coastline. It also shows the relationship between projected SLR under different global surface temperature 
increases in 2100 (KM 2.2). The left panel shows observed increasing average sea levels during 1920–2020 
(solid black line), an extrapolation out to 2050 based on observed sea levels over 1970–2020 (dashed black 
line), a range of scenarios describing plausible sea level rise out to 2150 (multicolored lines), and an overlapping 
stacked bar showing a range of projected changes in 2100 SLR under different levels of global surface tempera-
ture increase, based on the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. The 
right panel shows expanded versions of the projections shown in the stacked bar in the left panel. Black lines 
indicate the median value, the bars show the extent of the likely range (17th–83rd percentile) of SLR by 2100, 
and the associated warming levels are indicated above each bar. The “High warming, low confidence” case 
(yellow bar) refers to the potential range of rising seas under higher temperatures with rapid ice melt. The lack of 
overlap in 2100 between the High sea level scenario and the “High warming, low confidence” case in 2100 is not 
an indication of overestimation but rather a result of how the low-confidence processes are analyzed. Adapted 
from Sweet et al. 2022.2

SLR rate suppression and acceleration along the northwest and southwest Pacific coastlines is in part due 
to oceanographic forcings associated with the El Niño–Southern Oscillation (ENSO) and Pacific Decadal 
Oscillation (PDO).24 Along the Pacific Coast, ENSO and PDO will continue to drive decadal variability in SLR, 
with rates that are above or below the global average.24 The current rate remains higher than the global 
average.24 Characterizing past (and future) rise for Alaska and the US-Affiliated Pacific Islands is complicated 
due to tectonic effects that cause both uplift and subsidence. Year-to-year changes associated with natural 
variability can also change the rates over different analysis periods, such as the 8–12-inch (20–30 cm) 
variability in sea levels that can occur along the Pacific Coast during different phases of the ENSO.25,26,27
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Looking toward the future, an 11-inch (28 cm) average rise along the contiguous US coastline is expected by 
2050 (relative to 2020, with a likely range of 9–13 inches [23–33 cm]; see Table A1.2 in Sweet et al. 20222 for 
2000 to 2020 offsets) based on an observation-based trajectory of SLR (Figure 9.1). An 11-inch (28 cm) rise 
by 2050 matches the observed average SLR along the contiguous US coastline over the last 100 years (1920–
2020), representing ongoing SLR acceleration that falls between the Intermediate-Low and Intermediate sea 
level scenarios.2 By 2050, SLR amounts will continue to vary geographically, with regional differences like 
those observed in the recent historic record (e.g., 1990–2020). For example, under the Intermediate sea level 
scenario, which closely aligns with most regional SLR trajectories,2 SLR is expected to be higher along the 
Atlantic versus the Pacific Coast and greatest along the western Gulf Coast (Figure 9.2). 

Beyond 2050, future global emissions and resultant ocean and atmospheric warming and ice sheet 
responses will determine future SLR. As of 2021, global temperatures have increased by 2° –2.2°F (1.1°–1.2°C) 
beyond preindustrial levels (KM 2.1) and are headed for a warming level of about 5.4°F (3°C) by 2100 under 
the current trajectory,28 which is consistent with the IPCC AR6 intermediate and high scenarios (SSP2-4.5 
and SSP3-7.0). With such warming, it is likely that the Intermediate-Low sea level scenario with 2+ feet (0.6+ 
m) of SLR relative to 2020 levels will be exceeded by 2100, and 3.6+ feet (1.1+ m) will be exceeded by 2150 
(App. 3.3; Figure 9.1).2 

Failing to curb future emissions increases the probability of SLR equivalent to the Intermediate sea level 
scenario or perhaps even higher, such as the Intermediate-High and High sea level scenarios associated 
with the IPCC very high scenario (SSP5-8.5) that includes the addition of rapid ice sheet melt or disinte-
gration during this century.20 The probability of this low-likelihood outcome increases with higher global 
warming levels.29 Under the Intermediate to High sea level scenarios, an average SLR of about 3.6–6.9 feet 
(1.1–2.1 m) along contiguous US coastlines by 2100 and 6.9–12.5 feet (2.1–3.8 m) by 2150 relative to 2020 
would occur (Figure 9.1; App. 3.3).2 Under the Intermediate-High and High sea level scenarios, contribu-
tions from the Antarctic ice sheet dominate and reduce overall SLR differences across US regions (KMs 2.1, 
2.3).2 Beyond 2150, global (and US) SLR will continue for millennia due to the long-term effects of warming 
this century. About 7–33 feet (2–10 meters) of global SLR over the next 2,000 years is likely if temperatures 
warm by 3.6° to 5.4°F (2° to 3°C) above preindustrial levels by 2100, similar to conditions about 125,000 
years ago.20,30 
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Projected Sea Level Rise

By 2050 and 2100 under the Intermediate sea level scenario, sea level rise is projected to be higher along the 
Atlantic versus the Pacific Coast and greatest along the western Gulf Coast.

Figure 9.2. The figure shows relative sea level rise along the US coastlines under the Intermediate sea level sce-
nario of the US Interagency Sea Level Rise Task Force2 for 2050 (left) and 2100 (right). Relative sea level rise for 
the contiguous US is shown on the top, and for Alaska, Hawai‘i (left insets), and Puerto Rico (right insets) on the 
bottom. The black dots along the coastline indicate tide-gauge locations used to characterize past SLR. Char-
acterizing past (and future) SLR for Alaska and the US-Affiliated Pacific Islands is complicated due to tectonic 
effects that cause both uplift and subsidence. Figure credit: NOAA National Ocean Service. 

Increases in Flooding Frequency Will Continue
SLR will continue to cause permanent inundation for formerly dry lands and an escalation in the severity 
(depth, geographic extent, and frequency) of coastal flooding, ranging from powerful storm events to more 
frequent high tide flooding (HTF). As of 2020, the highest annual frequencies of coastal flooding—defined in 
a nationally consistent manner as minor (disruptive HTF, about 1.75–2 feet [0.5–0.6 m] above average high 
tide), moderate (damaging HTF, about 2.75–3 feet [0.8–0.9 m]), and major (destructive HTF, about 4 feet 
[1.2 m]) impacts2,31—are along the northeast Atlantic and western Gulf coastlines (Figure 9.3), due in part to 
greater exposure to strong storms and wide, shallow continental shelves allowing for higher storm surges.32

Annual frequencies of both minor and moderate coastal flooding increased by a factor of 2–3 along most 
Atlantic and Gulf coastlines between 1990 and 2020 (Figure 9.3). Minor HTF events, which are the most 
common impact of SLR, occur several times a year with accelerating frequencies (e.g., Sweet et al. 2019,33 
2020,34 202135). A typical HTF event lasts about two days and several high tides.2 Along the coastlines of 
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Hawai‘i, the US-Affiliated Pacific Islands, and US Caribbean islands, as well as some US Pacific coastlines, 
SLR is a growing problem. Flood impacts are occurring with much smaller flood heights than those shown in 
Figure 9.3, including in some cases where water levels are elevated only slightly above high tide.

By 2050 under the Intermediate sea level scenario (Figure 9.1), minor, moderate, and major coastal flood 
frequencies will all increase by a factor of about 5–10 in many regions relative to 2020 in the absence of 
adaptation (Figure 9.3). In effect, a flood regime shift would occur; for example, the frequencies of moderate 
flooding are projected to occur as often as minor, disruptive HTF occurs now (circa 2020). By 2100 under 
the Intermediate sea level scenario, major flooding would occur almost daily along US coastlines.2 These 
increases in flood frequency could be further amplified with higher amounts of SLR, worsening storm 
conditions, natural climatic variability (e.g., ENSO), or other reasons such as long-term tidal cycles and land 
subsidence or uplift.31,36 
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US Regional Average Flood Frequencies 

Minor, moderate, and major coastal flood frequencies will increase by a factor of about 5–10 in many regions of 
the US relative to 2020 in the absence of adaptation. 

Figure 9.3. (top) Descriptions of three coastal flood types—minor (disruptive), moderate (damaging), and major 
(destructive)—provided by NOAA National Weather Service, reflect today’s vulnerabilities within coastal com-
munities. (bottom) These graphs show annual average frequencies of minor, moderate, and major flooding by 
region (multicolored bars). The flood frequencies are based on a set of 187 NOAA tide gauges, with 14 in Ha-
wai‘i and the US-Affiliated Pacific Islands, 4 in Puerto Rico, and 4 in the US Virgin Islands (collectively shown as 
Islands). Note that this figure uses the US regions defined in Sweet et al. (2022),2 which differ from the NCA5 re-
gions: NE = northeast Atlantic, SE = southeast Atlantic, NW = northwest Pacific, SW = southwest Pacific, E. Gulf 
= eastern Gulf, W. Gulf = western Gulf. Observations are shown for 1990 and 2020, and projections are shown 
for 2050 under the Intermediate sea level scenario for all US coastal regions. The amount of SLR for each region 
during 1990–2020 and 2020–2050 under the Intermediate scenario is provided below the graph. The amount 
of SLR for Alaska is not shown because Alaska’s SLR varies along the shoreline due to both tectonic uplift and 
subsidence; the SLR values for Alaska are shown on Figure 9.2. The annual average frequencies of minor, mod-
erate, and major flooding are projected to increase more in the next 30 years (2020–2050) than they did in the 
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past 30 years (1990–2020) regardless of any future worsening of storm events. In some Atlantic and Gulf Coast 
regions exposed to hurricanes, more severe and catastrophic coastal flood levels are possible and will become 
more likely as sea levels rise. Figure credit: NOAA National Ocean Service. Photo credits: (left) City of Norfolk 
Staff Photographer Andrew Cooper; (center and right) Jeff Orrock, NOAA. 

Waves, Storminess, and Landscape Variability Amplify Flood Risk
Climate-driven changes to coastal water levels, including waves, storm surge, river flows, and landscape 
changes, are important considerations when planning for future flood risk.37,38,39 Wave-driven water levels, 
for example, comprise 25%–90% of extreme coastal water levels along exposed US coastlines.2,40,41 Across 
most US coasts, many extreme events are increasing in intensity, frequency, and geographic extent (KM 2.2) 
because of human-caused climate change (KM 3.1). For example, hurricanes are intensifying more rapidly 
and decaying more slowly, leading to stronger storms extending farther inland with heavier rainfall and 
higher storm surges, resulting in less time for communities to prepare (KM 2.2). Climate change is also 
increasing coastal hazards through changes in the frequency, magnitude, and impacts of compound events 
(Figure 9.3; Focus on Compound Events).42,43 In the coastal zone, compound flood events are commonly due 
to the joint occurrence of heavy precipitation, high river flows, elevated groundwater levels, soil saturation, 
and elevated ocean water levels.38,44,45 
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Key Message 9.2   
Coastal Impacts on People and Ecosystems  
Are Increasing Due to Climate Change

Climate change–driven sea level rise, among other factors, is affecting the resilience of 
coastal ecosystems and communities (very likely, high confidence). The impacts of climate 
change and human modifications to coastal landscapes, such as seawalls, levees, and urban 
development, are both limiting the capacity of coastal ecosystems to adapt naturally and are 
compounding the loss of coastal ecosystem services (very likely, high confidence). Proactive 
strategies are necessary to avoid degraded quality of life in the coastal zone, as the combi-
nation of reduced ecosystem services and damage to the built environment from exacerbated 
coastal hazards increasingly burdens communities, industries, and cultures (very likely, high 
confidence). 

On the coast, natural landscapes are intertwined with the cultures, economies, and built infrastructure of 
humans (Figure 9.4). Coastal landscapes (e.g., beaches, dunes, barrier systems, coastal wetlands, and cliffs) 
evolve across a range of timescales (from minutes to millennia) in response to physical forcing (e.g., tides, 
waves, storms, climate variability), as well as biological (e.g., vegetation type and density, ecosystem charac-
teristics) and geological (e.g., sediment flows, tectonics, substrate composition) controls.46 Climate change 
is exacerbating coastal hazards, with rising seas and more intense storms leading to increases in both flood 
risks and shoreline change and erosion (KM 9.1).47,48,49,50

Coastal communities face heatwaves, heavy rainfall, landslides, compound flooding, and other climate 
hazards that are not unique to coastal environments.14 The health, function, and productivity of coastal 
ecosystems are also being degraded by stressors from human actions (e.g., development, dredging, wetland 
infill, sediment diversions). Combined, these threats jeopardize attachment to place,51 economies, and safety 
(Figure 9.5).52,53 Understanding the interactions and interconnections between hazards (KM 9.1), communities, 
and coastal ecosystems is necessary for taking informed action to mitigate and adapt to climate change 
(KM 9.3).
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Existing Conditions in a Coastal Community 

Coastal landscapes and man-made interventions provide economic, cultural, and community protection from 
existing climate hazards under existing conditions.

Figure 9.4. This hypothetical coastal community shows some of the natural and built environments found in 
our Nation’s actual coastal communities. This community has several types of open coast shorelines, including 
1) cliffs, 2) low-lying beaches, and 3) a barrier island. Behind the barrier island is 4) a tidal estuary fringed with 
marshes. There are two residential neighborhoods, 5) a commercial hub, and 6) an industrial zone that is water 
dependent. The riprap at the cliff base and beach groins (narrow perpendicular structures extending from the 
beach into the ocean) provide protection from coastal erosion due to waves. Subsequent figures in this chapter 
will illustrate the possible impacts of climate change on this community (Figure 9.5) and adaptation strategies 
to increase its resilience (Figure 9.6). Adapted from Dupigny-Giroux et al. 2018.54 
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Increasing Hazards in a Coastal Community

Coastal communities are expected to flood due to rising sea levels and rising groundwater levels.

Figure 9.5. Future climate impacts to our coastal landscapes and communities will be variable. 1) Increased sea 
level and wave energy will result in shoreline erosion and the collapse of coastal cliffs, which can alter iconic 
landscapes and damage places of value, including historical or cultural sites. 2) Flooding and wave hazards, 
including 3) flooding from higher groundwater tables, are anticipated, threatening homes and businesses as well 
as infrastructure and utilities. 4) Some ecosystems may be able to adapt or migrate to keep pace with future 
sea levels, and others may become inundated and converted to open water. Adapted from Dupigny-Giroux et al. 
2018.54 

Impacts on Communities and People
Our Nation’s coasts underpin substantial sectors of our economy, serving as the entry and exit for goods 
and services (Focus on Risks to Supply Chains), generating revenue through recreation and tourism, and 
supporting thriving and diverse fisheries and other water-based industries. Coastal counties contribute $11 
trillion annually (in 2022 dollars) in goods and services and employ 58.3 million people.8 Increasing impacts 
to coastal systems due to exacerbating hazards will ripple across the US.

As extreme storms intensify and/or the impacts are exacerbated by SLR (KMs 2.2, 3.5), damages are 
increasing by the billions, with significant damage centered where tropical cyclones (e.g., hurricanes) make 
landfall55 and where extratropical cyclones are the more common driver of coastal hazards.48,56 Extreme 
storms and more frequent high tide flooding (HTF) bring cascading impacts, including loss of energy 
accessibility and continuity (KM 5.2); loss of ecosystem services (KMs 8.1, 8.3); impacts to agriculture from 
flooding and saltwater intrusion into groundwater (KM 30.1); flooding, erosion, and landslide disruptions to 
transportation (KM 13.1), utilities, infrastructure, emergency services, and teleconnections (KM 12.2); and 
population migration and displacement (KM 20.3). 
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Coastal hazard assessments that consider SLR, storm surge, waves, rainfall, and coastal change (e.g., beach 
and dune change, cliff change) can better depict potential future coastal response and societal impacts.37,57,58 
Compared to assessing only SLR-driven flooding, including these processes greatly expands the floodplain 
region in the northern Gulf of Mexico58 and triples the estimated number of people on the Pacific Coast 
exposed to flooding.37

During an extreme event, more ocean water can wash over barrier islands and flow into bays via inlets, 
enhancing flood risk and amplifying storm surge within inland coastal bays by more than 20%.59,60,61 
Continued population growth and urbanization will expose an ever-increasing number of people to coastal 
flood risks.3,62,63,64

Although extreme storm events make newspaper headlines, SLR brings chronic challenges that could 
be equally or more damaging over the long term.2 Coastal groundwater investigations in Pacific Island 
settings,65 low-lying atolls,66 karst aquifers,67 barrier island systems,68 and active tectonic margins69,70 have 
demonstrated that climate-driven groundwater rise will impact coastal communities and ecosystems due to 
saltwater intrusion into groundwater sources, more saturated soils, and ponding at the surface comparable 
in magnitude to SLR-driven overland flooding. Seawater intrusion into coastal aquifers can increase salinity 
beyond potable levels, endangering access to fresh water for millions of people.71 

The combination of rising groundwater and HTF in coastal communities will continue to impact 
stormwater and wastewater infrastructure, including septic systems, and increase the occurrence of 
urban flooding.72,73,74,75,76 This could cause public health concerns, such as pollutant discharges into the 
environment77 and the spread of environmental infectious diseases (KM 15.1). Additionally, contaminated 
sites, such as Superfund sites, face increasing exposure to rising groundwater and flood damages, which 
could lead to future public health and environmental concerns if buried contaminants are mobilized and 
enter groundwater or river systems (KM 28.2). HTF and rising groundwater will also increase occurrences 
of roadway flooding, potentially impeding traffic, delaying emergency response efforts, flooding properties, 
and negatively impacting real estate values and commerce.78,79,80,81,82 In agricultural areas, rising groundwater 
and saltwater intrusion in irrigation systems are reducing crop productivity, resulting in barren farmlands in 
the absence of salt-tolerant crops.83,84

The impacts of worsening coastal hazards are not equally distributed across US communities (KM 20.1; 
Box 20.1).85,86,87 Disparities in wealth, economic and educational opportunities, infrastructure quality and 
quantity, and investment in flood risk-reduction measures all contribute to variable physical and socio-
economic impacts on coastal residents.88,89,90 Many Tribal and Indigenous communities face severe impacts 
from extreme storms, erosion, permafrost thaw, and SLR, with limited resources to support adaptation 
(KMs 16.1, 29.4, 29.7; Ch. 30). Historic redlining policies forced communities of color into the least valuable, 
often low-lying lands that have increased flood risks, higher exposure to toxic substances, and more climate 
change–exacerbated hazards than non-redlined neighborhoods.91,92,93 Communities that are economically 
disadvantaged have a higher statistical risk of flood exposure than wealthier communities.86,87,88 This inequity 
is further increased because the impact of coastal flooding on individuals and communities is not only 
based on flood damages but also the ability to pay for the costs of recovery.85 Decades of limited community 
inclusion in decision-making and disinvestment in critical infrastructure and community services have 
generated greater risk to physical and socioeconomic impacts of coastal hazards.94

In addition to direct impacts from acute events, chronic impacts are also experienced unequally among 
coastal residents. Changes in ecosystem services such as fisheries habitats will impact Indigenous practices 
in which culture and biodiversity are inextricably linked. In the Hawaiian Islands, loko iʻa (Hawaiian 
fishponds) are low-intensity forms of aquaculture that traditionally provided food security, contributing to 
coastal community resilience (KMs 30.1, 30.5).95,96 These systems are threatened by SLR, with consequenc-



Fifth National Climate Assessment

9-16 | Coastal Effects

es on local livelihoods and cultural practices. Other communities, such as subsistence fishers and fisher-
ies-based rural villages, will similarly suffer as negative impacts on coastal fisheries habitat threaten their 
way of life (KMs 10.1, 10.2). 

The steady rise in flood insurance prices reduces home affordability in coastal regions, with many 
heirs and low-income and moderate-income property owners unable to afford flood insurance (KMs 
16.1, 21.5).97,98 Aside from home affordability, cascading effects such as climate gentrification—when 
affluent residents move into low-income areas less exposed to climate hazards, displacing the previous 
residents99,100,101—and lack of workforce will continue impacting culture, diversity, and economic productivity 
in coastal areas.99,102,103,104

Natural Resilience of the Coast Is Changing
For centuries, humans have been reshaping the coast to meet societal needs through urban development, 
sediment retention and diversion, and coastal defense structures.105,106,107 These interventions have driven 
many coastal systems dangerously close to irreversible and profound change (KM 8.1).108,109 Ecosystem losses 
due to erosion, more frequent flooding, and coastal squeeze (where human development or natural elevation 
change limits or prevents inland migration of coastal habitats) will increasingly limit the capacity of coastal 
landscapes to adapt naturally and diminish their ability to provide valuable ecosystem services (Figure 9.5; 
KM 8.1).47,110,111,112,113

Mangroves and salt marshes, collectively referred to as tidal wetlands, provide culturally and economically 
essential fisheries habitat and absorb and store floodwaters (Focus on Blue Carbon).114,115 SLR and increasing 
coastal hazards (KM 9.1), as well as eutrophication, sediment availability, poor drainage, and coastal squeeze 
can all drive tidal wetland loss.116,117 Some tidal wetlands may survive in place due to accretion, while others 
may migrate upland and convert other ecosystems (e.g., upland habitat, agriculture, and forests) into tidal 
wetlands.118,119 

Throughout the US, a net loss of tidal wetlands is expected, but the rate and extent to which the loss occurs 
will vary significantly by geography and climate change scenario.120 For example, in Chesapeake Bay,121 
Florida,122 and New Jersey,117 a net loss of tidal wetlands is expected. Along the Gulf Coast, mangroves are 
overtaking salt marshes, reflecting a shift in vegetation dynamics and habitat.123 Coastal development and 
steep topography limit inland migration along the Pacific Coast, and tidal wetland conversion to open water 
and net tidal wetland loss due to SLR appear inevitable.124

Barrier islands and reef systems act as a first line of flood defense, absorbing wave impacts as large storms 
make landfall, thereby reducing flood risk for coastal and inland communities.125,126,127,128,129 Barrier island and 
mainland beach systems may migrate landward naturally to keep pace with SLR, or they may be outpaced 
and narrow and/or flatten depending on their elevation, how frequently storm waves wash over them, 
sediment supply, and the persistence of vegetation, all of which can be affected by human modifica-
tions.61,130,131,132,133,134,135 

Long-term observations, projections of coastal change and erosion, and improved understanding of complex 
coastal feedback processes help define the conditions and tipping points that may limit natural adaptation 
(KM 8.1).136,137 Climate adaptation that restores natural processes and works with coastal ecosystems and 
landscapes may reduce flood risks while providing multiple co-benefits, including carbon sequestration (KM 
8.1; Focus on Blue Carbon). For example, acquired or restored open-space areas (e.g., undeveloped, agri-
cultural, or park lands) along the coast can provide accommodation space for inland wetland and coastal 
habitat migration as seas rise.138,139
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Allowing coastal ecosystems to evolve naturally may negatively impact some communities and wildlife 
species, such as the reshaping of barrier islands in response to extreme events that can increase inland 
storm surge (KM 9.1); however, these natural changes may have beneficial impacts for other species 
and communities through habitat creation and water quality improvements.50,134 All changes across the 
landscape have implications for changes to biodiversity via species declines, species range and phenological 
shifts, disease, and impacts from invasive species (KM 8.2), affecting seagrasses, corals, mangroves, fisheries, 
shorebirds, and marine mammals (KMs 21.2, 22.1, 23.2, 26.3, 27.3, 28.2, 30.4).

Key Message 9.3  
Adaptation Reduces Risk and Provides Additional 
Benefits for Coastal Communities

Accelerating sea level rise and climate change will transform the coastal landscape, requiring 
a new paradigm for how we live with, or adapt to, these changes (high confidence). Although 
incremental in nature, nature-based solutions and planned relocation strategies may help 
communities adapt to increasing coastal hazards if they are community-led and equity-cen-
tered (medium confidence). Maintaining cultural and economic connections within coastal 
communities will require equitable transformative adaptation that addresses systemic inter-
connections between ecosystems, communities, and governance (medium confidence).

Despite projected climate change impacts, coastal communities remain valued places for living and working. 
Relentless growth in, and enthusiasm for, the coast creates a tension between the need to adapt to climate 
change and our existing relationships with the coast.14,140 Although adaptation is occurring in some locations, 
small-scale and incremental adaptations are not sufficient for the pace and scale of changes that are already 
occurring (KMs 9.2, 31.1).13,14,15 Accelerating SLR and increasing coastal hazards (KM 9.1) are affecting larger 
geographic areas along the coast, expanding the scale and complexity of the adaptation responses and the 
number and diversity of stakeholders at risk.13

Adaptation that includes a broad suite of strategies that address the root causes of coastal vulnerabili-
ty, consider the needs of diverse stakeholders, center equity (KM 31.2), and reframe societal values and 
assumptions can lead to transformative and systemic change that can allow coastal communities to thrive 
and maintain a relationship with the coast (KMs 22.1, 31.3).141 Example strategies can include updated 
land-use policies,142,143 community infrastructure investments, nature-based solutions (NBSs), and planned 
relocation.14,144 Individually, these strategies are incremental steps, but when combined in a manner that 
considers long-term community goals and inclusive and sustained engagement with frontline communities, 
they can lead to equitable transformative adaptation (Figures 9.6, 22.6, 31.3; Box 9.1; KMs 31.2, 31.3).14,145 

Transformative adaptation requires fundamental shifts in systems, values, and practices to equitably 
address the risks of climate change (KM 31.3), including integration of local perspectives, which leads to 
more equitable distribution of resources.9 Community-led adaptation actions and NBSs can also enhance 
a sense of place by recreating lost relationships with the coast or fostering new ones between people and 
the environment.14
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Adaptation Strategies for a Coastal Community

Timely implementation of adaptation strategies, including planned relocation, can reduce the impacts of climate 
change on coastal communities.

Figure 9.6. Many strategies can reduce climate-driven coastal hazards. 1) Critical infrastructure, housing, and 
businesses can relocate out of harm’s way. Retreated lands create space for parks and recreational areas, 
nature-based solutions (NBSs) for flood risk-reduction, or migration space for coastal ecosystems, while also ac-
commodating rising waters. 2) Relocated communities may move into established communities, or 3) they may 
create new residential centers. Intentional and equitable stakeholder engagement helps ensure that historic 
inequities are not perpetuated during relocations. 4) NBSs, such as restoring wetlands, can slow and store rising 
waters. 5) Housing and structures can be relocated away from rising groundwater tables. 6) Combinations of 
green and gray infrastructure (hybrid strategies) may be required; for example, a living seawall provides shore-
line protection and beneficial habitat for marine organisms. 7) Cultural assets that define a community’s charac-
ter, such as this lighthouse, can be elevated or moved. Adapted from Dupigny-Giroux et al. 2018.54 
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Box 9.1. On the Road to Adaptation: Norfolk, Virginia

Norfolk, Virginia, home to 245,000 residents and the world’s largest naval complex, lies at the mouths of the James and 
Elizabeth Rivers and Chesapeake Bay. The rate of sea level rise is currently about 0.2 inches (4.7 mm) per year and accel-
erating. Today, high tide flooding (HTF) occurs 10–15 times annually and by 2050 could occur 85–125 times per year on 
average.2,146 Large-scale resilience projects that feature nature-based solutions (NBSs) are under construction as a result 
of citizen-led strategies that informed the city’s land use, regulations, and investments.147 

The Ohio Creek Watershed Project, funded by a $112 million National Disaster Resilience Competition grant, addresses 
HTF, storm flooding, and shoreline erosion that caused community isolation and fragmentation (Figure 9.7). The neigh-
borhoods are predominantly Black and include a public housing development and hundreds of homes on the National 
Historic Register. An extensive community involvement process made sure that residents from the impacted neighbor-
hoods were heard and that societal challenges would be addressed. The project’s centerpiece is Resilience Park, includ-
ing a restored tidal creek and flood berm, wetlands, and NBSs. Surrounding neighborhoods will have accessible roads 
during HTF events and gain community gathering spaces and places for work and play. 

Present and Future State of the Ohio Creek Watershed

Strategies that consider long-term community goals and inclusive and sustained engagement with frontline 
communities can lead to equitable transformative adaptation.

Figure 9.7. By centering the concept of community, neighborhoods will receive shoreline protection to 
address sea level rise and higher storm surge, updated infrastructure to address rising groundwater and 
increasing precipitation and runoff, a large gathering space known as Resilience Park, and accessible 
transportation for people and vehicles. This example of transformative adaptation involves traditional 
engineering projects and nature-based solutions. Adapted with permission from Waggonner & Ball ©2022.148
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Nature-Based Solutions in Coastal Communities
NBSs integrate natural processes with traditional engineering approaches to reduce flood risk while also 
preserving or enhancing the ecological value of natural landscapes (e.g., maintaining essential habitat 
for protected species) and providing potential societal, economic, and other co-benefits (Focus on Blue 
Carbon).149,150 NBSs can include ecosystem conservation and restoration or recreation of natural processes 
that reduce flood risks, hybrid solutions (e.g., living shorelines), and the greening of traditional infrastruc-
ture (e.g., ecological riprap).151,152 Although NBSs are effective in reducing temporary flooding resulting from 
storms, they may provide only modest benefits in preventing permanent inundation from SLR.149,153 However, 
when NBSs are paired with planned relocation, protection from flooding and SLR is provided by moving a 
community out of harm’s way while also reestablishing the natural flood risk-reduction benefits of coastal 
ecosystems.52 

Mangroves and other coastal wetlands reduce wave energy,154,155 decrease coastal erosion,156,157 and provide 
flood attenuation.114,158,159 Wetlands helped communities avoid $795.2 million (in 2022 dollars) in direct flood 
damages during Hurricane Sandy.127 Beaches and dunes reduce storm surges and absorb wave energy.160 
Coral reefs damp wave energy and provide flood protection for adjacent communities, with an estimated 
flood risk-reduction benefit of over $2.2 billion annually (in 2022 dollars) in the contiguous US161,162 and more 
than $1.1 billion (in 2022 dollars) annually in Hawaiʻi, Guam, American Sāmoa, the Commonwealth of the 
Northern Mariana Islands, Florida, Puerto Rico, and the US Virgin Islands.163

Hybrid solutions can reduce shoreline erosion164,165 and enhance the engineering design life and flood 
risk-reduction performance of traditional infrastructure.166 Flood risk-reduction benefits of hybrid solutions 
have been demonstrated across varying hydrodynamic conditions.165 NBS guidance documents149,167,168,169 are 
continually published, and implementation of NBS strategies is increasing. The ability to include adaptive 
elements in NBSs for future changing conditions144,170,171 makes them an important component of the 
adaptation landscape over the coming decades. 

Planned Relocation Strategies in Coastal Communities
Planned relocation is the process of moving individual properties, infrastructure, or whole communities 
preemptively away from, or in response to, the impacts of natural hazards.172 Historically, most communities 
have remained in place post-disaster by adapting or rebuilding using engineered solutions (KM 20.3).173 
However, as climate change impacts increase, adapting and rebuilding in place will become more 
challenging (KM 31.1). With accelerating SLR, particularly under low-likelihood, high-impact SLR scenarios 
(Figure 9.1), planned relocation may become more cost effective than adapting in place, with a lower 
long-term risk of loss of life and property if engineered solutions fail.174

In the US, planned relocation generally occurs reactively (i.e., post-disaster) rather than proactively (i.e., 
relocating at-risk communities before a disaster). For example, targeted buyouts of assets most at risk 
of future repetitive damage occurred after Hurricane Sandy in Staten Island, New York.175 Residents and 
communities have also relocated after natural disasters, such as Isle de Jean Charles, Louisiana;176 Kivalina, 
Alaska;177 and the Quinault Indian Nation (Box 20.1). As planned relocation expands, there is an urgent need 
to assess lessons learned from past relocations and lean into transformative adaptation that improves 
community well-being and addresses social, ecological, and intergenerational justice.178,179

Proactive planned relocation may become the most viable response for many future coastal communities as 
SLR continues and coastal lands become submerged.38,180 However, discussions of planned relocation remain 
challenging and controversial.12,174 Impediments include resistance to change;181 disagreements about when 
communities and infrastructure may be irrevocably lost and, thus, the appropriate timing for relocation; lack 
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of community-led decision-making; cost effectiveness compared to defending in place;174,182 disruptions to 
community cohesion and social capital;183,184 and identification of suitable replacement locations.185 

Transformative Adaptation Opportunities in Coastal Communities
Transformative adaptation that is proactive and intentional and involves fundamental shifts in systems, 
values, and practices (KM 31.3) provides opportunities to meet the challenges of shifting and receding 
shorelines. Transformative adaptation along the coast considers aspects such as funding and economic 
security, alignment of governmental entities, attachment to place and livelihoods, and technical 
expertise.52,53 

Intentional and equitable transformative adaptation is an opportunity to redress root causes of inequities 
and disparate impacts of climate change in coastal communities.14,15 Achieving this would require sustained 
funding dedicated to proactive planning, design, and execution.186 This would prevent reactive strategies 
that have historically exacerbated inequities and focused resources on wealthy, typically White communities 
(KM 20.3)187—a particular challenge in areas where there are large disparities in wealth and where lower-in-
come homeowners and renters lack affordable flood insurance.103

Current adaptation strategies that are increasingly being implemented on the coast could shift toward 
transformative adaptation if local communities are centered and inequities are transparently addressed 
(KMs 31.2, 31.3; Figure 31.2). This will require an incremental shift in practice, resulting in additional shifts in 
systems (e.g., permitting), values (e.g., recognizing and addressing past injustices), and risk tolerance (e.g., 
increasing comfort in natural shoreline protection over more traditional hardened structures).
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Traceable Accounts
Process Description
This assessment builds upon and amplifies the Key Messages within the “Coastal Effects” chapter of the 
Fourth National Climate Assessment, as those Key Messages are still relevant, yet they have become even 
more urgent.188 The US Interagency Sea Level Rise Task Force’s (hereafter “Task Force”) report2 provides 
clear evidence that sea level rise (SLR) is already accelerating and that current SLR tends are tracking on the 
Intermediate-Low curve or higher along the Nation’s coasts. 

Impacts associated SLR and extreme coastal storms are increasing per observations, coastal ecosystems 
and communities are facing increasing risks, and transformative adaptation grounded with nature-based 
solutions may provide our best hope to retain a sense of balance between the coasts and our coastal 
communities. The author team required a depth and breadth of expertise across the Atlantic, Gulf, and 
Pacific Coasts, as well as the coastlines of Hawaiʻi and the US-Affiliated Pacific Islands, the US Caribbean, 
and Alaska; the leading edge of SLR science; the physical processes that shape our coastlines; the systemic 
inequities that continue to put frontline communities at greatest risk; and the human actions that have 
altered the coasts and transformed the shoreline to suit societal desires. 

Prospective authors were nominated by their respective agencies, universities, organizations, or peers. The 
chapter lead and federal coordinating lead authors discussed and vetted prospective authors with a goal of 
creating a cohesive author team committed to bringing their formidable experience and skillsets together to 
develop this chapter.

This chapter was developed through weekly teleconferences, email exchanges, technical discussions of 
the relevant evidence base, and expert deliberation by the authors. The author team, along with the US 
Global Change Research Program, held a public engagement workshop with participants from federal, 
state, and local agencies; consultants; and interested members of the public. The workshop used innovative 
approaches and breakout groups that explored what the participants loved most about the coast before 
diving into the key topics that framed this chapter and the development of the Key Messages. 

The urgent need for adaptation, with an emphasis on nature-based solutions and planned relocation, was 
a clear driver for Key Messages 9.2 and 9.3. Additional literature is required that presents lessons learned 
and successful implementations, even if at a small scale, to achieve the scale of planned relocation that is 
expected to be required in the US over the next century.179 The authors extensively reviewed the literature 
on transformative adaptation and adaptation that centered equity, community values, and included strong 
community participation. The concept of transformative adaptation and planned relocation required 
dialogue across many chapters, with an emphasis on Chapter 20 (Social Systems and Justice) and Chapter 31 
(Adaptation) to achieve consistency and portray a sense of urgency for the Nation along these paths. 

Consensus on the Key Messages and supporting literature required multiple iterations, discussions with 
other chapters, and careful review and revisions in response to comments from the public and the National 
Academies of Sciences, Engineering, and Medicine. 
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Key Message 9.1  
Coastal Hazards Are Increasing Due to Accelerating  
Sea Level Rise and Changing Storm Patterns

Description of Evidence Base 
Multiple lines of evidence, including satellite and tide-gauge observations and model simulations, show 
that substantial SLR has occurred to date, globally and for the US, as documented and synthesized in the 
Working Group I contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate 
Change (AR6) and the Task Force report on SLR.2,189 Observations show that SLR is accelerating at global, 
national, regional, and local levels, and AR6 projections and the sea level scenarios from the Task Force 
report suggest that these trends are expected to continue over the next several decades and through 
the end of this century and beyond (see https://sealevel.nasa.gov/data_tools/18).2,189 Beyond 2150, SLR 
is expected to continue for the next several thousand years due to the long-term effects of emissions 
and warming over this past century, irrespective of future emissions occurring after 2100. These lines of 
evidence are synthesized, and a large body of relevant literature is documented (e.g., Dangendorf et al. 
2019;190 Frederikse et al. 2020;191 Fox-Kemper et al. 2021;20 Hamlington et al. 2021;192 Edwards et al. 2021193), in 
the Task Force report on SLR2 and IPCC AR6.189

An additional body of literature and references therein links this increase in average sea level to a broad 
range of risks and adverse impacts in the coastal zone. Extreme water levels will continue to rise with SLR, 
causing deeper, more frequent, more severe, and more widespread flooding (e.g., Sweet et al. 2021,35 2022;2 
Taherkhani et al. 2020;194 Thompson et al. 2021;36 Vitousek et al. 201741). Observational and model simulation 
evidence also indicates that many types of extreme events are increasing in intensity, frequency, and 
geographic extent as a result of human-caused climate change and that hurricanes, in particular, are inten-
sifying and causing heavier rainfall and higher storm surges, all of which compounds these flood risks (see 
evidence base underlying Key Messages 2.2 and 3.6 and USGCRP 2017195). Extreme water levels and flooding 
lead, in turn, to additional coastal zone impacts (e.g., erosion, damage to property and infrastructure, 
ecosystem impacts). Compound flooding associated with other coastal storm types (e.g., atmospheric rivers, 
extratropical cyclones) is also projected to increase with a warming climate.196,197,198

A further body of literature documents how population growth, migration, and development trends in the 
coastal zone have exacerbated societal risks and exposure of populations and the built environment to 
increasing SLR- and flooding-related hazards.199,200,201

Major Uncertainties and Research Gaps
For near-term impacts (to 2050), uncertainties and research gaps include the impact of natural climate 
variability on the observation-based trajectories, coastal adaptation, and policy actions to reduce future 
hazards and improved incorporation of interacting and compounding drivers into projections of coastal 
water levels and overall coastal flood hazards, such as winds, surge, waves, rising water tables, and extreme 
rainfall. In addition, more detailed understanding of, and data on, compound flood hazards is a key area of 
research needed to better understand and communicate flood risks and inform adaptation efforts. 

For longer-term impacts (after 2050), major uncertainties and research gaps include improved modeling 
and observational capabilities to assess long-term global average SLR trajectories as a function of uncer-
tainties in both emissions pathways and the sensitivity of ice sheet dynamical processes to a given level of 
warming, particularly the “low-confidence” ice sheet processes, as per IPCC AR6.20 Projections that include 
these ice sheet processes, particularly under higher-emissions futures, result in substantially higher global 
average SLR values by the end of this century and beyond. Pathways to such futures include outcomes 

https://sealevel.nasa.gov/data_tools/18
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such as earlier-than-projected ice shelf disintegration in Antarctica; abrupt, widespread onset of marine 
ice sheet instability and/or marine ice cliff instability in Antarctica; and faster-than-projected changes in 
surface-mass balance on Greenland, potentially associated with changes in atmospheric circulation, cloud 
processes, or albedo changes.2 Monitoring the sources of ongoing SLR and the processes driving changes 
in sea level is critical for assessing scenario divergence and tracking the trajectory of observed SLR, par-
ticularly during the period when future emissions pathways might increase the risk of triggering these 
low-confidence processes.

Description of Confidence and Likelihood
Based on a spatially weighted average of about 100 NOAA tide gauges and following methodologies in Sweet 
et al. (2022),2 there is high confidence that sea levels along the contiguous US have risen about 11 inches 
(likely range between 10 and 12 inches) on average over the 1920–2020 period, with about 5–6 of those 
inches occurring since 1990, indicating that sea level rise is accelerating. There is also high confidence that 
the probability of minor, moderate, and major coastal flooding increased by about 2–3 times between 1990 
and 2020 (as defined by contemporary NOAA weather-related impact thresholds calibrated to historic 
NOAA tide-gauge water level heights). Thus, it is very likely that the severity and risks of hazards are 
increasing. 

There is high confidence and it is likely that sea levels will rise about 11 inches (likely range of about 9–13 
inches) between 2020 and 2050 based on both extrapolating rates and accelerations estimated from 
historical tide-gauge observations and model projections, with both approaches producing projections 
within similar ranges. In response to 11 inches of SLR by 2050, there is high confidence and it is very likely 
that the probability of minor, moderate, and major coastal flooding will occur 5–10 times more often by 2050 
in many regions without additional flood risk-reduction measures, as compared to contemporary standards. 

Key Message 9.2  
Coastal Impacts on People and Ecosystems  
Are Increasing Due to Climate Change

Description of Evidence Base 
A growing body of literature captures the limited ability of coastal ecosystems to adapt to climate-driven 
changes, particularly due to human modification. Multiple lines of evidence show that physical changes 
in the coastal zone in response to climate change are occurring, including upland conversion and marsh 
expansion,121,122,202 expansion of mangrove systems,123 and marsh and beach loss due to erosion and barriers 
that limit inland migration of these ecosystems.47,50,110,119,138,203 The consequent loss of ecosystem services, such 
as storm protection, wetland carbon sequestration, sensitive habitat, and industry, including agriculture, 
tourism, recreation, and fishing, has been well documented (e.g., Siverd et al. 2020;204 Weiskopf et al. 
2020205), and the amplification of these losses via human modifications of the coast are well supported in the 
peer-reviewed literature.105,113,206

With ecosystem loss, exacerbated coastal hazards, and growing coastal populations, increasing damages and 
costs have been observed (e.g., Bouwer 2019;207 Hino et al. 2019;79 Smiley et al. 2022;208 Al-Attabi et al. 2023209), 
and ongoing health and safety concerns due to increasing flood frequencies, contaminated water supplies, 
degraded water quality, exposure to toxic substances, and strains on mental health due to the ongoing 
threat of disasters have been documented (e.g., Coutu 2018;210 Makwana 2019;211 Erickson et al. 2019;212 Gobler 
2020;213 Raker 2022214). Additionally, many studies have shown that 1) overburdened, under-resourced, eco-
nomically disadvantaged, or otherwise vulnerable populations (e.g., children, people with disabilities) face 
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a greater burden from disasters (e.g., Conzelmann et al. 2022;215 Raker 2022;214 Smiley et al. 2022208) and are 
limited in their ability to recover from these impacts, and 2) existing inequities continue to be magnified 
(e.g., Erman et al. 2020;216 Griego et al. 2020;217 Sou et al. 2021;218 Dundon and Camp 2021;219 Bento and Elliott 
2022220). Municipal coastal officials, elected officials, and staff continually document increasing challenges 
within their communities through participation in professional organizations (e.g., National League of Cities, 
Association of State Floodplain Managers, regional communities of practice). Specific challenges include the 
combination of increasing development and land-use pressures and exacerbating coastal hazards that put 
more homes, businesses, and individuals at risk. Numerous municipalities are installing backflow preventers, 
documenting high tide flooding, and attempting to manage magnified impacts from rainfall occurring con-
currently with high tide flooding and other coastal hazards (e.g., EcoSystems 2014;221 WSAV 2018;222 Coutu 
2021223). 

Major Uncertainties and Research Gaps 
Future coastal landscape change is difficult to model and predict broadly in the spatially detailed form 
required by decision-makers, due to the multitude and complexity of the processes and feedbacks acting 
within and across different coastal ecosystems.137,224,225

National-scale efforts are emerging to assess the risk of losing vital coastal wetland habitats112,226 and to 
monitor the daily to annual status of sandy beaches using satellite imagery.227,228,229 However, monitoring 
alone cannot save these at-risk ecosystems; improved understanding and ability to model the thresholds 
and/or tipping points associated with ecosystem loss versus survival are needed broadly to support 
proactive planning for management of coastal resources and communities.58,137 Information is needed about 
when and where saltwater intrusion may occur and its impacts.69,230,231

Anticipating and accounting for future human modifications that may reshape the coast and/or affect 
ecosystem behaviors are areas of considerable uncertainty.232 Multidisciplinary scenario development can 
help to explore the physical changes that may occur, how humans may choose to respond to these changes, 
and the resources that may be available to support these modifications, such as emplacement or removal of 
gray and green infrastructure, planned relocation, or trade-offs.233,234 A better understanding of when and in 
what form humans may take future action can in turn help inform understanding of the landscape response, 
which can better frame the immediate and longer-term risks to coastal populations in the future.232,235 

Description of Confidence and Likelihood
Based on observations and predictive modeling the authors have high confidence that the long-term sustain-
ability of our coastal ecosystems and human systems is very likely being affected by climate changes, partic-
ularly due to land loss. Observations and modeling have also given us high confidence that human measures 
that have historically been used to limit coastal change and have predominantly relied on hard, fixed infra-
structure solutions to protect development are very likely to make coastal areas less resilient to future 
change amplified by climate drivers. With this reduction in resilience, numerous studies have shown there 
is high confidence that coastal ecosystems are very likely to be limited in their ability to provide the services 
on which humans depend. There is high confidence based on the array of literature and studies available that 
the loss of these services are very likely to require proactive strategies to address significant and cascading 
impacts on cities, communities, and ways of life in the coastal zone.
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Key Message 9.3  
Adaptation Reduces Risk and Provides Additional 
Benefits for Coastal Communities 

Description of Evidence Base
Because coastal hazards will continue to worsen and the impacts to the natural and built environment will 
increase, coastal communities will have to adapt (or continue to adapt) to climate change. Business-as-usu-
al strategies are not expected to be sufficient in the future because they do not address the root causes of 
vulnerability in coastal communities9,14,15 nor acknowledge that sea levels will continue to rise beyond typical 
infrastructure planning time horizons.141,236

Consensus is growing to support nature-based solutions (NBSs) and strategies such as planned relocation as 
essential components of climate adaptation.149,153,169,237 There is a growing body of literature that demonstrates 
that NBSs can successfully provide flood risk protection.115,160,164,165,237 Multiple studies based on laboratory 
experiments have demonstrated the capacity of NBSs to attenuate wave energy, currents, and storm 
surges under a range of controlled conditions.238,239 Additional studies based on field measurements during 
extreme coastal events have validated these findings within a range of geographical settings and environ-
mental and extreme weather conditions.154,156,240 Numerical modeling studies have expanded these findings 
to low-frequency events and a broader range of extreme conditions.114,161,162 There is growing evidence on 
the functionality and performance of NBSs for flood risk reduction. This body of literature supports an 
increasing number of guidelines and practical guidance for NBS planning, design, and implementation.149,169 
State agencies are beginning to require prioritizing NBSs for coastal adaptation, where possible, in lieu of 
hardened infrastructure.

Planned relocation continues to be a topic of contentious debate in coastal communities, but there is 
growing evidence that demonstrates openness by communities to include these strategies in long-term 
planning discussions.241 This is particularly true if the definition of planned relocation is broadened to 
include different land-use policy levers that are common planning tools, such as setbacks or easements,242 as 
well as discussions and planning that are led by the community.243

Transformative adaptation to SLR is possible, in part, due to the array of efforts used to provide meaningful 
and understandable information to coastal stakeholders. In the coastal zone, stakeholders span a wide array 
of sectors, grappling with different priorities, timelines, and urgencies that often lead to differing needs. For 
example, ecologists designing a wetland restoration require probabilistic estimates of near-term SLR, while 
planners of critical infrastructure need to understand the full suite of possible risks across both the near 
term and long term to make wise decisions and investments for the communities they serve. The current 
state of the science and the corresponding guidance on how to make decisions in the face of the knowns 
and unknowns around rising seas (e.g., The Application Guide for the 2022 SLR Technical Report) are 
essential indicators that transformative adaptation, inclusive of NBSs and migration, is achievable.1

Major Uncertainties and Research Gaps 
Although it is generally understood that riverine flood risk-reduction projects, such as increasing levee 
heights, could exacerbate flood risks in downstream communities, the potential for a similar deflection 
of flood risks from one community in coastal environments is less understood. In San Francisco Bay, a 
modeling study showed that the addition of a levee or seawall to protect one community could increase 
flood risks elsewhere on the estuarine shoreline.6 This concept may be important to consider more broadly 
along the coast, as it intersects with equity considerations if communities with fewer resources to adapt are 
confronted with increased risks diverted from communities with greater resources. 

https://placeslr.org/wp-content/uploads/2022/07/Application-Guide.pdf
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Despite the growing number of studies investigating and validating the performance of NBSs for flood risk 
reduction, research gaps remain with respect to uncertainty in flood risk-reduction benefits under a range 
of future environmental conditions and hazards, given the intrinsic dynamic nature of NBS systems. Specif-
ically, what strategies work in active coastal zones with high wave energy? Furthermore, research is lacking 
with respect to NBS strategies in extreme environments, especially the Arctic, where traditional vegeta-
tion-centric approaches are not practical. This is especially relevant in western Alaska, where communities 
are experiencing increasing flood hazards and traditional flood protection is extremely costly. While there 
has been progress on developing standards and guidelines for using NBSs to reduce flood risk,149,167,168,169 there 
remains a need for professional engineering organizations and nongovernmental organizations to expand 
the existing documentation.

Uncertainties and research gaps on planned relocation tend to focus on the process and willingness of 
communities to relocate: What are the tipping points that encourage a community to adopt communi-
ty-wide planned relocation? Where should people move to, and are receiving communities prepared to take 
in increased populations? How does relocation get paid for? How can the psychological barriers to planned 
relocation be overcome? 

There is a lack of literature exploring the governance structures, laws, and policies necessary to support 
transformative adaptation, including planned relocation. Spanning the gap between adaptation planning 
and successfully implementing adaptation solutions on the ground requires overcoming governance 
challenges.244 Although the number of legal analyses relevant to adaptation is growing, these analyses are 
still limited in their practical application and scope.245,246 Research has demonstrated the value of multidi-
rectional policies, laws, and efforts at stimulating climate planning and adaptation, particularly the benefit 
of top-down laws directing the need to plan and implement adaptation without being overly prescriptive;53 
however, this work is in its early stages. Comprehensive analyses that explore how current policies impede 
or foster transformative climate adaptation would help to synthesize and identify where improvements 
could be made within governance structures to support successful adaptation.

There is limited research on the economic and social drivers of, and impediments to, transformative 
adaptation in coastal communities. Research is also lacking on the social psychology prerequisites needed 
for successful transformative adaptation. How will a coastal community know when residents are ready to 
start down the path of transformative adaptation? How can psychological readiness be fostered, including 
effective communication of future conditions that may compel this sort of action? 

Beyond NBSs and planned relocation, many incremental adaptations are well understood in terms of 
implementation and impact alone. For example, many communities have experience with raising roads, 
resizing drainage culverts, and building shoreline stabilization structures. However, research that results in 
effective guidance is lacking for larger measures, such as infrastructure abandonment or relocation and the 
aggregation of smaller measures. While there is an emerging body of research on this topic for individual 
actions,174,247,248 analysis at the community level across a range of adaptation actions and timelines is lacking.

The body of research supporting transformative adaptation is growing; however, much of this research is 
not tailored for coastal communities. There is a gap in research on the preconditions for, and drivers of, 
success in coastal communities. Furthermore, there is also a gap in research that assesses the effectiveness 
of mitigation and adaptation approaches under low-likelihood, high-impact scenarios, given that these 
approaches necessarily change under extreme SLR scenarios.

Description of Confidence and Likelihood
Increasing coastal hazards, changing weather patterns, and extreme storms are causing widespread and 
rapid changes along our Nation’s coasts (high confidence). At present, adaptation efforts are most often 
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incremental in nature and sector-specific (e.g., focused on adapting a wastewater treatment plant or stretch 
of roadway) as opposed to community-wide in scale (high confidence). As SLR accelerates, exposing greater 
populations and geographies to coastal hazards, this adaptation approach will become ineffective.

Adaptation responses that move beyond traditional solutions may include nature-based solutions and 
planned relocation. There is medium confidence that nature-based solutions and planned relocation 
strategies, when they are community-led and equity-centered, can provide an equitable response to coastal 
hazards and climate change impacts. There is medium confidence that transformative adaptation that 
centers the community within the planning, design, and implementation of multi-benefit solutions can 
better maintain the social, cultural, and economic connections communities require to thrive.

The statements in this Key Message are supported both in the literature cited and in the author team’s 
understanding of the state of the adaptation practice across a wide variety of coastal communities, both in 
geography and in social systems. This community-focused lens supplements the published literature and 
allows the authors to reflect the most current consensus on this topic.
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