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Focus on Western Wildfires
Climate change is leading to larger and more severe wildfires in the western 
United States, bringing acute and chronic impacts both near and far from the 
flames. These wildfires have significant public health, socioeconomic, and 
ecological implications for the Nation.

Fire is a critical ecosystem process across the western US. In recent decades, wildfires in the western 
United States have become larger, hotter, and more destructive and deadly due to a suite of factors, 
including climate change. Prior to federal policy to suppress wildfires, natural wildfire and Indigenous 
burning ensured that landscapes benefited from regular fires for millennia (KM 28.5).1 Nineteenth- and 
early-20th-century land-use practices, followed by a policy of fire elimination, led to vegetation fuel buildup 
in low-elevation fire-adapted western forests, and livestock grazing promoted highly flammable annual 
grass dominance in rangelands (KMs 2.2, 7.1, 28.5).2,3,4 Development in the last 50 years has greatly expanded 
the wildland–urban interface (KMs 12.2, 28.5)5 and increased human-caused ignitions, jeopardizing people, 
property, and infrastructure.6,7 In recent years, climate change has contributed to very large and severe fires. 
While low- and moderate-severity fire with small patches of high severity can have important ecological 
benefits (Chs. 7, 28), large, high-severity fires often have profoundly negative long-term ecological, social, 
and economic consequences (Figure F2.1; KM 28.4).8,9
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Wildfire Impacts

 
Climate change has increased the area burned and severity of wildfires and impacts on the environment, human 
health, and society. 

Figure F2.1. Indicators and risks illustrate the drivers of, impacts from, and solutions to wildfire across a range of 
socioecological contexts within and beyond the western states. Considering these helps improve understanding 
of how impacts are experienced and how to adapt. Figure credit: USDA ARS, USDA Forest Service, University of 
Washington, and Montana Health Professionals for a Healthy Climate.
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Climate change has produced warmer and drier conditions with prolonged droughts that stress forest 
vegetation, facilitating pest outbreaks and tree death, leading to the accumulation of surface fuel.10,11 
Wildfires are moving up in elevation, due to warming temperatures, reduced snowpacks and summer 
precipitation, and overall drier conditions (KMs 2.2, 3.5, 7.1, 28.5). Climate change has also increased vapor 
pressure deficit that dries fuels, altering fire behavior that results in large, hotter, and more severe fires 
(KMs 7.1, 28.5).12,13,14,15 Consequently, the annual area burned and area burned by high-severity wildfires 
have increased in the West about eightfold since 1985 (Ch. 7).14,16 And while the annual area burned is on 
par with pre-European settlement, the very large, high-severity, and deadly and destructive wildfires 
result in significant socioecological and economic impacts. These trends are expected to continue at least 
to midcentury, when fuel availability is expected to become more limited in some western forests (KMs 
3.5, 28.5).17

In some non-forested regions, primarily arid shrublands and steppes, changes in the frequency and extent 
of wildfires are being driven primarily by invasive annual grasses that have benefited from climate change.2,18 
Intermountain West steppe rangelands are among the most threatened ecosystems in the US due to land 
use and wildfires, which have become larger and more frequent.19 In oak savanna and chaparral shrublands, 
historical increases in fire are linked to changes in human ignitions and land use.7,20

Further increases in area burned and wildfire severity are expected to alter the distribution and abundance 
of plants and animals and lead to biodiversity loss (KM 7.1). In some cases, forested areas that experienced 
repeated severe reburns have transitioned to shrublands or other vegetation types.21,22,23 Already, approx-
imately 75% of vegetation type conversion in the Southwest is due to high-severity fire.24 Continued 
warming, reductions in precipitation in some areas, and more frequent fire in forest and non-forest 
ecosystems can facilitate the establishment of invasive species, increase fuel flammability, reduce tree 
regeneration after wildfires,18,25,26 and alter vegetation types (KMs 7.5, 28.5).27 Potential reductions in 
forest and shrub cover due to climate-driven changes and wildfire reduce the potential for some western 
forestlands and steppe rangelands to function as carbon sinks (KM 7.2).

Although restored fire regimes can benefit forest hydrology in some cases,28 wildfires can put critical 
infrastructure at risk by altering soil conditions and water runoff (KM 6.1). Following fire, intense rain on 
water-repellent soils can cause debris flows, which cause human deaths, property damage, and costly road 
closures (KM 6.1).29 Chemical runoff can contaminate water supplies, and excess sediment runoff can reduce 
reservoir storage capacity.30,31,32 Soot from fire emissions also darkens the surface of snow and ice, altering 
snow retention and melt in potentially undesirable ways.33,34 

Human infrastructure can also affect wildfire risk. Although uncommon, fires caused by electrical trans-
mission lines have been large and deadly. The 2018 Camp Fire nearly destroyed the entire town of Paradise, 
California, displacing tens of thousands of residents,35 many of whom have not returned. To reduce such 
ignitions, electrical grid power shutoffs are used during windy weather.36 However, this approach can 
disrupt local economies (e.g., agriculture and healthcare) and livelihoods, with disproportionately high 
impacts on rural and overburdened communities.37

Wildfire smoke can be transported thousands of miles, causing significant environmental, public health, 
and socioeconomic impacts across the country (KMs 14.1, 19.1, 25.1).38,39 Smoke from burning vegetation and 
built structures contains fine particulate matter (PM2.5), ozone precursors, and other toxic components 
(KM 14.2).40 Although the annual average level of PM2.5 has declined over recent decades due to air quality 
policies, the frequency and severity of smoke events in the western US make wildfire the largest contributor 
to PM2.5 in this region, offsetting some of those improvements (KM 14.1). Exposure to wildfire smoke is 
associated with adverse cardiovascular and respiratory outcomes (KM 15.1), as well as increased risks of 
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COVID-19 mortality (Focus on COVID-19 and Climate Change).41,42 Wildfire smoke may also affect neonatal 
human health, such as lower birthweights or pregnancy loss.43,44 

Projected changes in wildfire are expected to result in a significant health burden, especially for at-risk 
populations.45 Susceptibility to wildfire smoke exposure can be exacerbated by age, preexisting health 
conditions, socioeconomic status, occupation, and housing status (e.g., people who are unhoused 
experience constant exposure). Wildland firefighters are at increased risk of lung cancer mortality and 
cardiovascular diseases.46 Where wildfires overlap with harvest seasons, farmworkers and other outdoor 
workers (frequently low-income workers from immigrant and Indigenous communities) are at risk (KMs 14.2, 
15.2, 16.1, 27.1, 28.4).

Enhancing ecosystem resilience and protecting communities from wildfires is achievable through 
investments in both ecosystems and social systems (KM 28.5). Proactive actions include strategically placing 
forest fuel treatments in high-fire-risk locations and accelerating vegetation management, including the 
use of fire at ecologically meaningful spatial scales. These actions often require surface and ladder fuel 
reductions through prescribed burning or mechanical removal47 and allowing low-intensity wildfires to 
burn in strategic locations (KMs 7.3, 28.5). In fire-adapted ecosystems, low- and moderate-severity wildfires 
reduce smaller trees, shrubs, and dead fuels, maintaining forests with fewer, more widely spaced trees (KMs 
7.3, 28.5), thus increasing resilience to future climate impacts. Burned area rehabilitation efforts can reduce 
sediment runoff and protect water supply and hydroelectrical infrastructure (KMs 5.1, 7.1).

Efforts to strategically reduce the number of human-caused ignitions and investments in home hardening 
are important adaptation measures in some areas.7,20 Fireproofing structures and other design and con-
struction efforts can reduce the likelihood of structure ignition, lessening wildfire risk to communities.48 
Land and community planning practices—including zoning, ordinances, and building codes—influence 
wildfire risks to homes in wildfire-prone regions.49 Additional measures for protecting communities involve 
improvements in data access and usability, emergency response planning, healthcare system prepared-
ness, and early-warning systems for evacuation and timely communication of health impacts to the public, 
especially for at-risk populations and outdoor workers (KMs 14.1, 19.3). 
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Traceable Accounts 
Description of Evidence Base and Research Gaps 
This focus box examines observed and projected wildfire trends for western North America and the impacts 
of wildfire nationally.3,38,50 This includes research that has used remotely sensed and modeled data, alongside 
field-based experimental and observational data, to demonstrate that the influence of climate change on 
current and future wildfire is through warming temperatures, which have reduced fuel moisture content 
and made the fuels more flammable.11,12,14,22 Research demonstrates that roughly half of the increase in area 
burned is due to increases in fuel flammability as a result of anthropogenic climate change (KMs 3.5, 7.1).12 
Warming, lowered humidity, and atmospheric drying (i.e., higher vapor pressure deficit) have facilitated 
increases in the frequency of fire-conducive weather as well as of annual area burned and the proportion 
burned at high severity by wildfire (KM 2.2).14,16 Similar methods have also been used to elucidate factors 
influencing wildfire smoke pollutant mixture and the effects on human health.38,39,42

There is strong and building evidence that reducing forest fuels and lowering the density of trees in forests 
lessens the impact of climate-mediated stress and disturbance.4 Greater resistance and resilience to wildfire 
can be achieved through mechanical vegetation treatments with the use of prescribed fire and managed 
wildfire (KMs 7.3, 28.5). An increased and refined understanding of appropriate adaptation strategies to 
safeguard ecosystems, communities, and people could enhance outcomes of future investments.4 There 
is evidence that planning, zoning, updating building codes, and fireproofing structures can mitigate risk 
and losses to infrastructure and property.48,49 Key areas of future investigation include, but are not limited 
to, the appropriate suite of land-based practices (i.e., thinning, prescribed fire) as well as the ecosystem 
specificity (e.g., forest or vegetation type) and the appropriate spatial scale needed to meaningfully reduce 
risk.15 Lastly, an increased understanding of the composition of rural populations in the western US, how 
different subsets of the population access information, and behavioral responses to wildfire-related alerts 
would allow for more targeted messaging and more informed allocation of resources during wildfire and 
smoke events.45
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